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VOLUME 1 - 4TH EDITION, 2ND PRINTING, 2020

p. 5 Correct Fig. 1.1.2 so that the system equation reads

xk+1 = xk + uk − wk

and the cost per stage reads

r(xk) + cuk

p. 47 Change the last equation to

Jεk(xk) = E
wk

{
gk
(
xk, µεk(xk), wk

)
+ Jεk+1

(
fk
(
xk, µεk(xk), wk

))}
≤ E
wk

{
gk
(
xk, µεk(xk), wk

)
+ Jk+1

(
fk
(
xk, µεk(xk), wk

))}
+ (N − k − 1)ε

≤ Jk(xk) + ε+ (N − k − 1)ε

= min
uk∈U(xk)

E
wk

{
gk
(
xk, uk, wk

)
+ Jk+1

(
fk
(
xk, uk, wk

))}
+ (N − k)ε

≤ E
wk

{
gk
(
xk, µk(xk), wk

)
+ Jπk+1

(
fk
(
xk, µk(xk), wk

))}
+ (N − k)ε

= Jπk(xk) + (N − k)ε,

p. 66 (-4) Change the equation to

Vk(yk) = Ewk

{
Jk+1

(
hk(yk, wk), wk

)}
.
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p. 77 (-2) Change “HHM” to “HMM”

p. 94 (+5) Change f
Y

to f
Y
− f

X

p. 294 (-4) Change “paper” to “book”

p. 430 (+4) Replace the part

Assuming that J̃∗ has the required differentiability properties, we expand
it into a first order Taylor series around (kδ, x), obtaining

J̃∗
(
(k + 1) · δ, x+ f(x, u) · δ

)
= J̃∗(kδ, x) +∇tJ̃∗(kδ, x) · δ

+∇xJ̃∗(kδ, x)′f(x, u) · δ + o(δ),

where o(δ) represents second order terms satisfying limδ→0 o(δ)/δ = 0,
∇t denotes partial derivative with respect to t, and ∇x denotes the n-
dimensional (column) vector of partial derivatives with respect to x. Sub-
stituting in the DP equation, we obtain

J̃∗(kδ, x) = min
u∈U

[
g(x, u) · δ + J̃∗(kδ, x) +∇tJ̃∗(kδ, x) · δ

+∇xJ̃∗(kδ, x)′f(x, u) · δ + o(δ)
]
.

Canceling J̃∗(kδ, x) from both sides, dividing by δ, and taking the limit as
δ → 0, while assuming that the discrete-time cost-to-go function yields in
the limit its continuous-time counterpart,

lim
k→∞, δ→0, kδ=t

J̃∗(kδ, x) = J∗(t, x), for all t, x,

we obtain the following equation for the cost-to-go function J∗(t, x):

0 = min
u∈U

[
g(x, u) +∇tJ∗(t, x) +∇xJ∗(t, x)′f(x, u)

]
, for all t, x,

with the boundary condition J∗(T, x) = h(x).

with the following:

Assuming that J̃∗ has the required differentiability properties, we expand
it into a first order Taylor series around

(
(k + 1)δ, x

)
, obtaining

J̃∗
(
(k + 1) · δ, x+ f(x, u) · δ

)
= J̃∗

(
(k + 1)δ, x

)
+∇xJ̃∗

(
(k + 1)δ, x

)′
f(x, u) · δ + o(δ),

where o(δ) represents second order terms satisfying limδ→0 o(δ)/δ = 0, and
∇x denotes the n-dimensional (column) vector of partial derivatives with
respect to x. Substituting in the DP equation, we obtain

J̃∗(kδ, x) = min
u∈U

[
g(x, u) · δ + J̃∗

(
(k + 1)δ, x

)
+∇xJ̃∗

(
(k + 1)δ, x

)′
f(x, u) · δ + o(δ)

]
.
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By dividing with δ, and by introducing the “discretized” partial derivative
with respect to t, given by

∇̂tJ̃∗(kδ, x) =
J̃∗
(
(k + 1)δ, x

)
− J̃∗

(
kδ, x)

δ
,

we obtain

0 = min
u∈U

[
g(x, u) + ∇̂tJ̃∗(kδ, x) +∇xJ̃∗

(
(k + 1)δ, x

)′
f(x, u) +

o(δ)

δ

]
.

Taking the limit as δ → 0, while assuming that

lim
k→∞, δ→0, kδ=t

∇̂tJ̃∗(kδ, x) = ∇tJ∗(t, x), for all t, x,

lim
k→∞, δ→0, kδ=t

∇xJ̃∗
(
(k + 1)δ, x

)
= ∇xJ∗(t, x), for all t, x,

we obtain the following equation for the cost-to-go function J∗(t, x):

0 = min
u∈U

[
g(x, u) +∇tJ∗(t, x) +∇xJ∗(t, x)′f(x, u)

]
, for all t, x,

with the boundary condition J∗(T, x) = h(x).

p. 490 (+4) Change x(·) : <m → <m to x(·) : <m → <n

p. 490 (+12) Change x(·) : <n → <m to x(·) : <m → <n
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VOLUME 1 - 4TH EDITION, 1ST PRINTING, 2017

p. 5 Correct Fig. 1.1.2 so that the system equation reads

xk+1 = xk + uk − wk

and the cost per stage reads

r(xk) + cuk

p. 47 Change the last equation to

Jεk(xk) = E
wk

{
gk
(
xk, µεk(xk), wk

)
+ Jεk+1

(
fk
(
xk, µεk(xk), wk

))}
≤ E
wk

{
gk
(
xk, µεk(xk), wk

)
+ Jk+1

(
fk
(
xk, µεk(xk), wk

))}
+ (N − k − 1)ε

≤ Jk(xk) + ε+ (N − k − 1)ε

= min
uk∈U(xk)

E
wk

{
gk
(
xk, uk, wk

)
+ Jk+1

(
fk
(
xk, uk, wk

))}
+ (N − k)ε

≤ E
wk

{
gk
(
xk, µk(xk), wk

)
+ Jπk+1

(
fk
(
xk, µk(xk), wk

))}
+ (N − k)ε

= Jπk(xk) + (N − k)ε,

p. 66 (-4) Change the equation to

Vk(yk) = Ewk

{
Jk+1

(
hk(yk, wk), wk

)}
.

p. 295 (-9) Change J̃k to J̃k+1

p. 301 (-9) Change xk to xN−1

p. 324 (-4) Change “Example 3.3.1” to “Example 6.3.1”

p. 339 (+15) Change i = 1, . . . , q to s = 1, . . . , q

p. 342 (+8) Change “approximations” to “approximations and simulation-
based implementations”

p. 430 (+4) Replace the part

Assuming that J̃∗ has the required differentiability properties, we expand
it into a first order Taylor series around (kδ, x), obtaining

J̃∗
(
(k + 1) · δ, x+ f(x, u) · δ

)
= J̃∗(kδ, x) +∇tJ̃∗(kδ, x) · δ

+∇xJ̃∗(kδ, x)′f(x, u) · δ + o(δ),
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where o(δ) represents second order terms satisfying limδ→0 o(δ)/δ = 0,
∇t denotes partial derivative with respect to t, and ∇x denotes the n-
dimensional (column) vector of partial derivatives with respect to x. Sub-
stituting in the DP equation, we obtain

J̃∗(kδ, x) = min
u∈U

[
g(x, u) · δ + J̃∗(kδ, x) +∇tJ̃∗(kδ, x) · δ

+∇xJ̃∗(kδ, x)′f(x, u) · δ + o(δ)
]
.

Canceling J̃∗(kδ, x) from both sides, dividing by δ, and taking the limit as
δ → 0, while assuming that the discrete-time cost-to-go function yields in
the limit its continuous-time counterpart,

lim
k→∞, δ→0, kδ=t

J̃∗(kδ, x) = J∗(t, x), for all t, x,

we obtain the following equation for the cost-to-go function J∗(t, x):

0 = min
u∈U

[
g(x, u) +∇tJ∗(t, x) +∇xJ∗(t, x)′f(x, u)

]
, for all t, x,

with the boundary condition J∗(T, x) = h(x).

with the following:

Assuming that J̃∗ has the required differentiability properties, we expand
it into a first order Taylor series around

(
(k + 1)δ, x

)
, obtaining

J̃∗
(
(k + 1) · δ, x+ f(x, u) · δ

)
= J̃∗

(
(k + 1)δ, x

)
+∇xJ̃∗

(
(k + 1)δ, x

)′
f(x, u) · δ + o(δ),

where o(δ) represents second order terms satisfying limδ→0 o(δ)/δ = 0, and
∇x denotes the n-dimensional (column) vector of partial derivatives with
respect to x. Substituting in the DP equation, we obtain

J̃∗(kδ, x) = min
u∈U

[
g(x, u) · δ + J̃∗

(
(k + 1)δ, x

)
+∇xJ̃∗

(
(k + 1)δ, x

)′
f(x, u) · δ + o(δ)

]
.

By dividing with δ, and by introducing the “discretized” partial derivative
with respect to t, given by

∇̂tJ̃∗(kδ, x) =
J̃∗
(
(k + 1)δ, x

)
− J̃∗

(
kδ, x)

δ
,

we obtain

0 = min
u∈U

[
g(x, u) + ∇̂tJ̃∗(kδ, x) +∇xJ̃∗

(
(k + 1)δ, x

)′
f(x, u) +

o(δ)

δ

]
.
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Taking the limit as δ → 0, while assuming that

lim
k→∞, δ→0, kδ=t

∇̂tJ̃∗(kδ, x) = ∇tJ∗(t, x), for all t, x,

lim
k→∞, δ→0, kδ=t

∇xJ̃∗
(
(k + 1)δ, x

)
= ∇xJ∗(t, x), for all t, x,

we obtain the following equation for the cost-to-go function J∗(t, x):

0 = min
u∈U

[
g(x, u) +∇tJ∗(t, x) +∇xJ∗(t, x)′f(x, u)

]
, for all t, x,

with the boundary condition J∗(T, x) = h(x).

p. 490 (+4) Change x(·) : <m → <m to x(·) : <m → <n

p. 490 (+12) Change x(·) : <n → <m to x(·) : <m → <n
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VOLUME 2 - 4TH EDITION, 2ND PRINTING, 2018

p. 14 (+12) Change (x, u, w) to (x, u).

p. 14 (+13) Change
∣∣E{g(x, u)}

∣∣ ≤ b to
∣∣E{g(x, u, w)}

∣∣ ≤ b.
p. 258 (+14) Change line∣∣gk(xk, uk, wk)

∣∣ ≤M, for all (xk, uk, wk) ∈ Xk × Uk ×Wk,

to ∣∣∣E{gk(xk, uk, wk)
}∣∣∣ ≤M, for all (xk, uk) ∈ Xk × Uk,

p. 258 (+17) Change line

0 ≤ gk(xk, uk, wk), for all (xk, uk, wk) ∈ Xk × Uk ×Wk,

to
0 ≤ E

{
gk(xk, uk, wk)

}
, for all (xk, uk) ∈ Xk × Uk,

p. 258 (+19) Change line

gk(xk, uk, wk) ≤ 0, for all (xk, uk, wk) ∈ Xk × Uk ×Wk,

to
E
{
gk(xk, uk, wk)

}
≤ 0, for all (xk, uk) ∈ Xk × Uk,

p. 435 (-11) Change Exercise 6.7 to Exercise 6.8.

p. 457 (-11) Change “weighted sup-norm” to “weighted Euclidean norm”.

p. 472 Change the third equation from the bottom to

Cµ = Φ′Ξµ(1−αPµ)Φ = ( 1 2 )

(
1/2 0
0 1/2

)(
1 −α
−a 1

)(
1
2

)
=

5− 4α

2
,

p. 472 Change the second equation from the bottom to

dµ = Φ′Ξµgµ = ( 1 2 )

(
1/2 0
0 1/2

)(
0
0

)
= 0,

p. 473 Change the second equation from the top to

dµ∗ = Φ′Ξµ∗gµ∗ = ( 1 2 )

( 1
2−p 0

0 1−p
2−p

)(
pc
0

)
=

pc

2− p
,

p. 473 Change the third equation from the top to

rµ∗ =
pc

5− 4p− α(4− 3p)
.

p. 492 (+6) Change Ckr to Ckrk.
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VOLUME 2 - 4TH EDITION, 1ST PRINTING, 2012

p. 63 (+9) Change equation to

lim
k→∞

‖Jµ − T kµJ‖ = 0, lim
k→∞

‖J∗ − T kJ‖ = 0.

p. 68 (-9) Change “Applying Eq. (1.60) with J and TJ and replaced by
J ′ and J , respectively” to “Applying Eq. (1.60) with J ′ and J replaced by
J and TJ , respectively”

p. 87 (-7) Change “αc1 ≤ c2” to “αc1 ≤ c2”

p. 125 (-9 and -11) Change “Section 1.6.1” to “Section 1.6.2”

p. 135 (-5, -4, and -3) The calculation in these three lines has a flaw,
and in the final result µ should be replaced by µ. Change these three lines
to the following:

‖T J̄ − TµJ̄‖ ≤ ‖T J̄ − TµJ̄‖+ ‖TµJ̄ − TµJ̄‖ ≤ ε+ ζ,

and by replacing ε with ε+ ζ and µ with µ in Eq. (2.79), we obtain

‖Jµ − J∗‖ ≤
ε+ ζ + 2αδ

1− α
.

p. 136 (+17) Change “µ ≤M” to “µ ∈M”

p. 141 (-7) Change “J ∈ S(0)” to “J0 ∈ S(0)”

p. 142 (20) Change “J ∈ S(0)” to “J0 ∈ S(0)”

p. 147 (-7) Change “∀ µ ∈M” to “for some µ ∈M”

p. 163 (1) Part (a) of Exercise 2.9 requires additional assumptions, such
as pij = 0 for all i and j 6= i, i+ 1. See Exercise 7.8 of Vol. I.

p. 230 (-5) Change “X, U , and W” to “X and U”

p. 230 (-1) Change “g(i, u) +
∑n
j=1 pij(u)zj” to “

∑n
j=1 pij(u)

(
g(i, u, j) +

zj
)
”

p. 231 (+4) Change “g(i, u)+
∑n
j=1 pij(u)zj” to “

∑n
j=1 pij(u)

(
g(i, u, j)+

zj
)
”

p. 237 (-7) Change “t
(
fc(x,w)

)
” to “s

(
fc(x,w)

)
”

p. 237 (Last paragraph) For a one-step lookahead policy to be optimal
it is not enough that condition (4.24) holds. It is also necessary that the
monotonically nonincreasing) sequence (T ks)(x) converges to J∗(x) for all
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x ∈ X. This is needed for the argument of Section 4.4, Vol. I, to go through,
but may not be true under Assumption P. It is, however, true for the case of
Example 4.4.1 of the next page, so the analysis of that example is correct.

p. 412 (+18) Change “b̄ = E
{
A(w)

}
” to “b̄ = E

{
b(w)

}
”

p. 415 (+14) Change “probabilities and stage costs” to “probabilities”

p. 435 (-17) Change “implementation” to “implementations”

p. 436 (-10) Change “to to” to “to”

p. 461 (+13) Change “product” to “sum of the products”

p. 461 (-12) Change “w`(i)(T (w)J)(i)” to “w`(i)(T `J)(i)”

p. 491 (-10) Change “J̃k(i)→ J∗(i)” to “J̃0(i)→ J∗(i)”

p. 492 (-11) Change “i belongs” to “j belongs”

p. 508 (+15) Change “issue” to “issues”

p. 559 (+6) Change “C−1dk” to “C−1d”

p. 567 (-20) Change “row” to “column”

p. 575 (+11) Change “γP” to “γΠP”

p. 641 (-5) Change “assume reader” to “assume a reader”

p. 654 (+13) Change “µk(uk)” to “µk(xk)” (twice)

p. 663 (+13) Insert additional reference

[Bla65] Blackwell, D., 1965. “Positive Dynamic Programming,” Proc. Fifth
Berkeley Symposium Math. Statistics and Probability, pp. 415-418.
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VOLUME 1 - 3RD EDITION

p. vi (-16) Change title of Chapter 6 to “Approximate Dynamic Program-
ming”

p. 7 (+19) Change “... after operation B ...” to “... after operation C ...”

p. 52 (+5) Change “J0(1) = 2.67 and J0(2) = 2.608” to “J0(1) = 2.7 and
J0(2) = 2.818”

p. 99 (+1) Change “Figure 2.4.1” to “Figure 2.4.2”

p. 106 (-15) Add footnote: “Our definition of piecewise continuous control
functions assumes a finite number of points of discontinuity within [0, T ].
The solution x(t) of the differential system (3.1) is then continuous for
t ∈ [0, T ], and differentiable at all points t ∈ [0, T ] where u(t) is continuous.
Thus, formally, for given piecewise continuous u(t), a solution of Eq. (3.1) is
a continuous function x(t) which is differentiable at all points of continuity
of u(t) and satisfies Eq. (3.1) at these points.”

p. 153 (-12 Relabel “Proposition 4.4.1” to “Proposition 4.1.1”

p. 171 (-3) Change “e−x/a” to “−e−x/a”

p. 172 (-8) Change “Using relation (4.31),” to “Using relations (4.30) and
(4.31),”

p. 185 (+1) Technically Example 4.4.1 is not a time-homogeneous prob-
lem. However, because the DP equation is time-homogeneous the analysis
of pp. 183-184 on one-step lookahead rule applies (the proof only uses time-
homogeneity of the DP mapping).

p. 213 (+9) This problem is flawed as stated. Replace the statement with
the following:

4.27

Consider the quiz contest problem of Example 5.1, where the questions are par-
titioned in M groups, and there is an order constraint that all the questions in
group m must be answered before the questions in group m+ 1 can be answered.
Show that an optimal list can be constructed by ordering the questions within
each group in decreasing order of piRi/(1 − pi). Consider also the problem of
optimally ordering the groups in addition to optimally ordering the questions
within each group. Show that it is optimal to answer groups in order of decreas-
ing W/(1− P ), where for a given group, W is the expected reward obtained by
answering only the questions of that group and in optimal order, and P is the
probability of answering all the questions of the group correctly.

p. 214 (+2) Change “[β, β]” to “[−β, β]”
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p. 222 (+7) Change “and for k = 0, 1, . . . , N − 2,

Jk(Ik) = min
uk∈Uk

[
E

xk, wk, zk+1

{
gk(xk, uk, wk) + Jk+1(Ik, zk+1, uk) | Ik, uk

}]
.

(5.5)
to “and for k = 0, 1, . . . , N − 2,

Jk(Ik) = min
uk∈Uk

[
E
zk+1

{
g̃k(Ik, uk) + Jk+1(Ik, zk+1, uk) | Ik, uk

}]
or equivalently

Jk(Ik) = min
uk∈Uk

[
E

xk, wk, zk+1

{
gk(xk, uk, wk) + Jk+1(Ik, zk+1, uk) | Ik, uk

}]
.

(5.5)

p. 265 (+7 and +8) Change “αk” to “α”

p. 268 (+6) Change “(1− p)L0, pL0” to “(1− p)L0, pL1”

p. 270 (-5) Change “... Exercise 5.6 ...” to “... Exercise 5.3 ...”

p. 327 (+21) Change “relies provides” to “provides”

p. 331 (-8) Change “−∞” to “∞”

p. 331 (-9) Change “∞” to “−∞”

p. 387 (+20) Change “... all which ...” to “... all of which ...”

p. 393 (+8) Change “lim|x|→1 g(x) =∞” to “lim|x|→∞ g(x) =∞”

p. 406 (+16) Change “... no more that” to “... no more than”

p. 426 (+6) Change “... λ∗ is the same” to “is a constant λ∗”

p. 428 (-16) Change “... for all i and k.” to “... for all i.”

p. 431 (-9) Change “... tentative backed-up score TBS(n) of position n
to ∞ if it is White’s turn to move at n and to −∞ if it is Black’s turn
...” to “...tentative backed-up score TBS(n) of position n to −∞ if it is
White’s turn to move at n and to ∞ if it is Black’s turn ...”

p. 443 (+10, +21, +24) Change “Nnn” to “Tnn”

p. 446 (1) In this problem we do not assume the 10-yard rule, which
allows for a return to a first down, once progress by at least 10 yards has
been made within four downs. Thus the drive will last for at most four
downs. Alternatively, you may assume the 10-yard rule. The problem will
be similar, but the number of states will be larger.

p. 453 (1) Change “decreases monotonically with i” to “is monotonically
nondecreasing with i”

p. 453 (-16) Change “1− pApBpC” to “pApBpC”
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p. 453 (-15) Change “decreasing” to “nondecreasing”

p. 453 (-8) Change “1 + pApB” to “1 + pA + pApB”

p. 467 (+4) Change “∂xi∂xj” to “∂xi∂xj”

p. 479 (-14) Change “... Prop. A1 of Appendix A in Vol. II.” to “...
Section 4.1 of Vol. II.”

p. 512 (-3) Change “... with conceptually convenient ...” to “... with the
conceptually convenient ...”
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VOLUME 2 - 3RD EDITION

p. 51 (+12) Delete the phrase “where S̃ ... S = (1, . . . , n).”

p. 57 (+2) Change “satisfying ‖y‖ ≥ 0 for all y ∈ Y , ‖y‖ = 0 if and only
if y = 0” to “satisfying for all y ∈ Y , ‖y‖ ≥ 0, ‖y‖ = 0 if and only if y = 0,
‖ay‖ = |a|‖y‖ for all scalars a,”

p. 63 (+19) Change “→ 0” to “= 0”

p. 63 (+21) Change “→ 0” to “= 0”

p. 119 (-8) Change “a proper policy” to “an optimal proper policy”

p. 120 (-2) Change “of the multistage policy iteration algorithm discussed
in Section 2.3.3.” to “of a multistage policy iteration algorithm.”

p. 198 (-10) Change Prop. 4.1.9 to Prop. 4.2.1

p. 274 (+21) Change Section 6.4.2 to Section 4.6.2

p. 341 (+14) Change ‖J − Ĵ‖ to ‖J − Ĵ‖v
p. 341 (-4) Change

∑n
i=1 to

∑n
j=1

p. 342 (+7) Change
∑n
i=1 to

∑n
j=1

p. 351 (-1) Change (αλ)k to (αλ)t

p. 353 (+9) Change φ(it+1) to αφ(it+1)

p. 354 (+5) Change φ(ik+1) to αφ(ik+1)

p. 369 (-16) Change Eq. (6.66) to read

k∑
t=0

φ(it)q̃(it+1, rk) =
∑

t≤k, t∈T

φ(it)c(it+1) +

 ∑
t≤k, t/∈T

φ(it)φ(it+1)′

 rk,

(6.66)

p. 370 (+13) Change P (i0 = i) > 0 to P (i0 = i)

p. 371 (+4) Change “... q(1), . . . , q(n).” to “... q(1), . . . , q(n). We assume
that q0(i) are chosen so that q(i) > 0 for all i [a stronger assumption is
that q0(i) > 0 for all i].”

p. 380 (-14) Change the first two sentences of the proof of Prop. 6.6.1(b)
to read as follows:

(b) If z ∈ <n with z 6= 0 and z 6= aΠCz for all a ≥ 0,

‖(1− γ)z + γΠCz‖ < (1− γ)‖z‖+ γ‖ΠCz‖ ≤ (1− γ)‖z‖+ γ‖z‖ = ‖z‖,
(6.83)

where the strict inequality follows from the strict convexity of the norm,
and the weak inequality follows from the non-expansiveness of ΠC. We
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also have ‖(1 − γ)z + γΠCz‖ < ‖z‖ if z 6= 0 and z = aΠCz for some
a ≥ 0, because then ΠH has a unique fixed point so a 6= 1, and ΠC is
nonexpansive so a < 1.

p. 401 (+21) Along with Longstaff and Schwartz [LoS01], add reference
to the following paper, which has similar content:

[TsV01] Tsitsiklis, J. N., and Van Roy, B., 2001. “Regression Methods for
Pricing Complex American-Style Options,” IEEE Trans. on Neural Net-
works, Vol. 12, pp. 694-703.

p. 404 (+1) Delete the 1st sentence: “Show ... Φ′V g/Φ′V Φ.”

p. 420 (+13) Change “µk(uk)” to “µk(xk)” (twice)
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VOLUME 1 - 2ND EDITION

p. 10 (+21) Change “this true.” to “this is true.”

p. 109 (+4) The expression should read

g
(
x, µ∗(t, x)

)
+∇tJ∗(t, x) +∇xJ∗

(
t, x
)′
f
(
x, µ∗(t, x)

)
,

p. 115 (-8) The equation should read

x∗(t) = x(0)eat +
b2ξ

2a

(
e−at − eat

)
,

p. 136, (+10) Change “the optimal u∗(t)” to “the sine of the slope of the
optimal x∗(t)”

p. 150, (+10) Change “Eq. (4.12)” to “Eq. (4.11)”

p. 156, Fig. 4.2.1 Change L(y) to Gk(xk)

p. 157 (+13) Change G(xk) to Gk(xk)

p. 160 (-11) Change

JN−1(x) = min

[
cx+GN−1(x), min

y>x

[
K + cy +GN−1(y)

]]
− cx.

to

JN−1(x) = min

[
GN−1(x), min

y>x

[
K +GN−1(y)

]]
− cx.

p. 168 The following is a cleaner version of the three paragraphs starting
with the title “Asset Selling”:

Asset Selling

As a first example, consider a person having an asset (say a piece of land) for
which he is offered an amount of money from period to period. We assume
that the offers, denoted w0, w1, . . . , wN−1, are random and independent,
and take values within some bounded interval of noonnegative numbers
(wk = 0 could correspond to no offer received during the period). If the
person accepts an offer, he can invest the money at a fixed rate of interest
r > 0, and if he rejects the offer, he waits until the next period to consider
the next offer. Offers rejected are not renewed, and we assume that the
last offer wN−1 must be accepted if every prior offer has been rejected.
The objective is to find a policy for accepting and rejecting offers that
maximizes the revenue of the person at the Nth period.
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The DP algorithm for this problem can be derived by elementary
reasoning. As a modeling exercise, however, we will embed the problem
in the framework of the basic problem by specifying the system and cost.
We define the state space to be the real line, augmented with an additional
state (call it T ), which is a termination state. By writing that the system
is at state xk = T at some time k ≤ N − 1, we mean that the asset has
already been sold. By writing that the system is at a state xk 6= T at
some time k ≤ N − 1, we mean that the asset has not been sold as yet
and the offer under consideration is equal to xk (and also equal to the kth
offer wk−1). We take x0 = 0 (a fictitious “null” offer). The control space
consists of two elements u1 and u2, corresponding to the decisions “sell”
and “do not sell,” respectively. We view wk as the disturbance at time k.

With these conventions, we may write a system equation of the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where the function fk is defined via the relation

xk+1 =

{
T if xk = T , or if xk 6= T and uk = u1 (sell),
wk otherwise.

Note that a sell decision at time k (uk = u1) accepts the offer wk−1, and
that no explicit sell decision is required to accept the last offer wN−1, as
it must be accepted by assumption if the asset has not yet been sold. The
corresponding reward function may be written as

E
wk

k=0,1,...,N−1

{
gN (xN ) +

N−1∑
k=0

gk(xk, uk, wk)

}

where

gN (xN ) =

{
xN if xN 6= T ,
0 otherwise,

gk(xk, uk, wk) =
{

(1 + r)N−kxk if xk 6= T and uk = u1 (sell),
0 otherwise.

p. 177 (+15) Change dp(w) to dP (w)

p. 187 (+9) and p. 189 (+8) Change N−1k Ck to N−1k

p. 217 (+1) Change “If involves” to “It involves”

p. 217 (-7) Change
P (x1 = P ,G,G, S)

P (G,G, S)

to
P (x1 = P ,G,G | S)

P (G,G | S)
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p. 218 (+2) Change
P (x1 = P ,G,B, S)

P (G,B, S)

to
P (x1 = P ,G,B | S)

P (G,B | S)

p. 218 (+9) Change
P (x1 = P ,G,G,C)

P (G,G,C)

to
P (x1 = P ,G,G | C)

P (G,G | C)

p. 222 (-9) Change x′N−1KN−1xN−1 | IN−2} to E{x′N−1KN−1xN−1 |
IN−2, uN−2}
p. 244 (+9) The following is a cleaner version of the three pages that start
with “The Conditional State Distribution as a Sufficient Statistic”
title and end just before the “The Conditional State Distribution
Recursion” title.

The Conditional State Distribution as a Sufficient Statistic

There are many different functions that can serve as sufficient statistics.
The identity function Sk(Ik) = Ik is certainly one of them. To obtain
another important sufficient statistic, we assume that the probability dis-
tribution of the observation disturbance vk+1 depends explicitly only on the
immediately preceding state, control, and system disturbance xk, uk, wk,
and not on xk−1, . . . , x0, uk−1, . . . , u0, wk−1 . . . , w0, vk−1, . . . , v0. Under
this assumption, it turns out that a sufficient statistic is given by the condi-
tional probability distribution Pxk|Ik of the state xk, given the information
vector Ik. In particular, we will show that for all k and Ik, we have

Jk(Ik) = min
uk∈Uk

Hk

(
Pxk|Ik , uk

)
= Jk(Pxk|Ik), (5.34)

where Hk and Jk are appropriate functions.
To this end, we note an important fact that relates to state estimation

of discrete-time stochastic systems: the conditional distribution Pxk|Ik can
be generated recursively. In particular, it turns out that we can write for
all k

Pxk+1|Ik+1
= Φk

(
Pxk|Ik , uk, zk+1

)
,

where Φk is some function that can be determined from the data of the
problem. Let us postpone a justification of this for the moment, and accept
it for the purpose of the following discussion.
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We note that to perform the minimization in Eq. (5.32), it is suffi-
cient to know the distribution PxN−1|IN−1

together with the distribution
PwN−1|xN−1,uN−1

, which is part of the problem data. Thus, the minimiza-
tion in the right-hand side of Eq. (5.32) is of the form

JN−1(IN−1) = min
uN−1∈UN−1

HN−1
(
PxN−1|IN−1

, uN−1
)

= JN−1(PxN−1|IN−1
),

for appropriate functions HN−1 and JN−1.
We now use induction, i.e., we assume that

Jk+1(Ik+1) = min
uk+1∈Uk+1

Hk+1

(
Pxk+1|Ik+1

, uk+1

)
= Jk+1(Pxk+1|Ik+1

),

for appropriate functions Hk+1 and Jk+1, and we show that

Jk(Ik) = min
uk∈Uk

Hk

(
Pxk|Ik , uk

)
= Jk(Pxk|Ik),

or appropriate functions Hk and Jk.
Indeed, for a given Ik, the expression

min
uk∈Uk

E
xk,wk,zk+1

{
gk(xk, uk, wk) + Jk+1(Ik+1) | Ik, uk

}
in the DP equation (5.33) is written as

min
uk∈Uk

E
xk,wk,zk+1

{
gk(xk, uk, wk) + Jk+1

(
Φk
(
Pxk|Ik , uk, zk+1

))
| Ik, uk

}
.

In order to calculate the expression being minimized over uk above, aside
from Pxk|Ik , we need the joint distribution

P (xk, wk, zk+1 | Ik, uk)

or, equivalently,

P
(
xk, wk, hk+1

(
fk(xk, uk, wk), uk, vk+1

)
| Ik, uk

)
.

By using Bayes’ rule, this distribution can be expressed in terms of Pxk|Ik ,
the given distributions

P (wk | xk, uk), P
(
vk+1 | fk(xk, uk, wk), uk, wk

)
,

and the system equation xk+1 = fk(xk, uk, wk). Therefore the expression
minimized over uk can be written as a function of Pxk|Ik and uk, and the
DP equation (5.33) can be written as

Jk(Ik) = min
uk∈Uk

Hk

(
Pxk|Ik , uk

)
18



for a suitable function Hk. Thus the induction is complete and it follows
that the distribution Pxk|Ik is a sufficient statistic.

Note that if the conditional distribution Pxk|Ik is uniquely determined

by another expression Sk(Ik), that is, Pxk|Ik = Gk
(
Sk(Ik)

)
for an appropri-

ate function Gk, then Sk(Ik) is also a sufficient statistic. Thus, for example,
if we can show that Pxk|Ik is a Gaussian distribution, then the mean and
the covariance matrix corresponding to Pxk|Ik form a sufficient statistic.

Regardless of its computational value, the representation of the opti-
mal policy as a sequence of functions of the conditional probability distri-
bution Pxk|Ik ,

µk(Ik) = µk(Pxk|Ik), k = 0, 1, . . . , N − 1,

is conceptually very useful. It provides a decomposition of the optimal
controller in two parts:

(a) An estimator , which uses at time k the measurement zk and the
control uk−1 to generate the probability distribution Pxk|Ik .

(b) An actuator , which generates a control input to the system as a func-
tion of the probability distribution Pxk|Ik (Fig. 5.4.1).

This interpretation has formed the basis for various suboptimal control
schemes that separate the controller a priori into an estimator and an actu-
ator and attempt to design each part in a manner that seems “reasonable.”
Schemes of this type will be discussed in Chapter 6.

Figure 5.4.1 Conceptual separation of the optimal controller into an estimator

and an actuator.

Alternative Perfect State Information Reduction

By using the sufficient statistic Pxk|Ik we can write the DP algorithm in
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an alternative form. Using Eq. (5.34), we have for k < N − 1

Jk(Pxk|Ik) = min
uk∈Uk

[
E

xk,wk,zk+1

{
gk(xk, uk, wk)

+ Jk+1

(
Φk(Pxk|Ik , uk, zk+1)

)
| Ik, uk

}]
.

(5.35)
In the case where k = N − 1, we have

JN−1(PxN−1|IN−1
)

= min
uN−1∈UN−1

[
E

xN−1,wN−1

{
gN
(
fN−1(xN−1, uN−1, wN−1)

)
+ gN−1(xN−1, uN−1, wN−1) | IN−1, uN−1

}]
.

(5.36)
This DP algorithm yields the optimal cost as

J∗ = E
z0

{
J0(Px0|z0)

}
,

where J0 is obtained by the last step, and the probability distribution of
z0 is obtained from the measurement equation z0 = h0(x0, v0) and the
statistics of x0 and v0.

By observing the form of Eq. (5.35), we note that it has the standard
DP structure, except that Pxk|Ik plays the role of the “state.” Indeed the
role of the “system” is played by the recursive estimator of Pxk|Ik ,

Pxk+1|Ik+1
= Φk

(
Pxk|Ik , uk, zk+1

)
,

and this system fits the framework of the basic problem (the role of control
is played by uk and the role of the disturbance is played by zk+1). Further-
more, the controller can calculate (at least in principle) the state Pxk|Ik
of this system at time k, so perfect state information prevails. Thus the
alternate DP algorithm (5.34)-(5.35) may be viewed as the DP algorithm
of the perfect state information problem that involves the above system,
whose state is Pxk|Ik , and an appropriately reformulated cost function. In
the absence of perfect knowledge of the state, the controller can be viewed
as controlling the “probabilistic state” Pxk|Ik so as to minimize the expected
cost-to-go conditioned on the information Ik available.

p. 254 (-1) Change ak to αk

p. 255 (+6) Change 1− 1
C to 1− I

C

p. 261 (+8) Change “Exercise 5.6” to “Exercise 5.3”

p. 262 (+15) Change y′0Kky0 to y′0K0y0

p. 266 (-5) Delete part (e) (it is correct only for open-loop policies)
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p. 310 (11) Change “... tentative backed-up score TBS(n) of position n
to ∞ if it is White’s turn to move at n and to −∞ if it is Black’s turn
...” to “...tentative backed-up score TBS(n) of position n to −∞ if it is
White’s turn to move at n and to ∞ if it is Black’s turn ...”

p. 316 (+16) Change “of question” to “of questions”

p. 349 (+15) Change “Section 1.3” to “Section 2.3”

p. 353 (+12) Change “CEC is 1.” to “CEC with nominal values w0 =
w1 = 0 is 1.”

p. 357 (+13) Replace Exercise 6.13 by the following:

6.13 (Discretization of Convex Problems)

Consider a problem with state space S, for all k, where S is a convex subset
of <n. Suppose that Ŝ = {y1, . . . , yM} is a finite subset of S such that S is the
convex hull of Ŝ, and consider a one-step lookahead policy based on approximated
cost-to-go functions J̃0, J̃1, . . . , J̃N defined as follows:

J̃N (x) = gN (x), ∀ x ∈ S,

and for k = 1, . . . , N − 1,

J̃k(x) = min

{
M∑
i=1

λiĴk(yi)

∣∣∣ M∑
i=1

λiyi = x,

M∑
i=1

λi = 1, λi ≥ 0, i = 1, . . . ,M

}
,

where Ĵk(x) is defined by

Ĵk(x) = min
u∈Uk(x)

E
{
gk(x, u, wk) + J̃k+1

(
fk(x, u, wk)

)}
, ∀ i = 1, . . . ,M.

Thus J̃k is obtained from J̃k+1 as a “grid-based” convex piecewise linear approx-
imation to Ĵk based on the M values

Ĵk(y1), . . . , Ĵk(yM ).

Assume that the cost functions gk and the system functions fk are such that the
function Ĵk is real-valued and convex over S whenever J̃k+1 is real-valued and
convex over S. Show that the cost-to-go functions Jk(xk) corresponding to the
one-step lookahead policy satisfies for all x ∈ S

Jk(x) ≤ Ĵk(x) ≤ J̃k(x), k = 0, 1, . . . , N − 1.

Hint : Use Prop. 6.3.1.

p. 373 (-1) Replace N∗(j) by N∗(j)

p. 374 (+3), (+8) Replace N∗(j) by N∗(j)
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p. 396 (+6) The expression should read

τ i(u) =

n∑
j=1

∫ ∞
0

τdQij(τ, u),

p. 402 (+15), (+19), (-5) Change g(i, u) to G(i, u)

p. 402 (-5) After Eq. (7.54), add the following sentence: If there is an
“instantaneous” one-stage cost ĝ(i, u), the term G(i, u) should be replaced
by ĝ(i, u) +G(i, u) in this equation.

p. 408 (+2) Change (7.6) to (7.17)

p. 451 (+12) Change CkN
−1
k to C ′kN

−1
k

p. 476 (-11) Change

Pd1 � Pd2 if and only if E
{
U
(
f(d1, n)

)
| d1
}
≤
{
U
(
f(d2, n)

)
| d2
}
.

to

Pd1 � Pd2 if and only if E
{
U
(
f(d1, n)

)
| d1
}
≤ E

{
U
(
f(d2, n)

)
| d2
}
.
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VOLUME 2 - 2ND EDITION

p. 7 (+19) Change “operation D can be performed only after operation B
has been performed” to “operation D can be performed only after operation
C has been performed”

p. 50 (+17) Change “Tsitsiklis” to “Castanon”

p. 64 (+13) Change the first four lines of the proof as follows:

Proof: In view of Eqs. (1.59) and (1.65), existence of a PPR policy is
equivalent to having, for all i,

max

{
M,max

j 6=i
Lj(x,M, J)

}
≥ Li(x,M, J), for all x with xi ∈ Si,

(1.66)
M ≤ Li(x,M, J), for all x with xi /∈ Si, (1.67)

p. 70 (+10) Change pi to Pi

p. 74 (+1) Change “ ... , [VeP84], and Verd’u and Poor [VeP87].” to “ ...
, and Verd’u and Poor [VeP84], [VeP87].”

p. 80 (+17,+19,27) Change 1 to s

p. 84 (+10) Change the equation to

TµJ = TJ. (1.87)

p. 94 (-1) Change equation to

Jµ(1) = −(1− u2)u+ (1− u2)Jµ(1)

p. 95 (+2) Change equation to

Jµ(1) = −1− u2
u

.

p. 123 (+6) Change “thrtwe” to (2.33)

p. 136 (+3) Change “an optimal proper policy” to “a proper policy”

p. 136 (+11) Change “optimal and proper.” to “optimal.”

p. 136 (-10) Change the last four lines of the hint to:

By taking limit superior as N →∞, we obtain J∗ ≥ TJ∗ ≥ Jµ. Therefore,
µ is an optimal policy and we have J∗ = TJ∗. For the rest of the proof
follow the line of proof of Prop. 2.1.2.
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p. 181 (-2) Change “discount factor” to “discount factor with α < 2”

p. 190 (-1) Change “no optimal policy (stationary or not).” to “no optimal
stationary policy.”

p. 206 (-1) Change “N1” to “N − 1”

p. 208 (-12) Change Exercise number to 4.32.

p. 234 (+20) Change “Prop. 4.3.3” to “Prop. 4.2.6”

p. 235 (+14) Change “the probabilities q(i, u), u ∈ U(i).” to “some prob-
abilities.”

p. 247 (-4) Change “for some β > 0” to “for some β ∈ (0, 1)”

p. 264 (-6) Change ak to αk

p. 265 (+3) Change 1− 1
C to 1− I

C
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