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CHAPTER 3: EXERCISES AND SOLUTIONS†

SECTION 3.1: Constrained Optimization

3.1 (Local Minima Along Lines)

(a) Consider a vector x∗ such that a given function f : ℜn 7→ ℜ is convex over
a sphere centered at x∗. Show that x∗ is a local minimum of f if and only
if it is a local minimum of f along every line passing through x∗ [i.e., for all
d ∈ ℜn, the function g : ℜ 7→ ℜ, defined by g(α) = f(x∗ + αd), has α∗ = 0
as its local minimum].

(b) Consider the nonconvex function f : ℜ2 7→ ℜ given by

f(x1, x2) = (x2 − px2
1)(x2 − qx2

1),

where p and q are scalars with 0 < p < q, and x∗ = (0, 0). Show that
f(y, my2) < 0 for y 6= 0 and m satisfying p < m < q, so x∗ is not a local
minimum of f even though it is a local minimum along every line passing
through x∗.

Solution: (a) If x∗ is a local minimum of f , evidently it is also a local minimum
of f along any line passing through x∗.

Conversely, let x∗ be a local minimum of f along any line passing through
x∗. Assume, to arrive at a contradiction, that x∗ is not a local minimum of f
and that we have f(x) < f(x∗) for some x in the sphere centered at x∗ within
which f is assumed convex. Then, by convexity of f , for all α ∈ (0, 1), we have

f
(

αx∗ + (1 − α)x
)

≤ αf(x∗) + (1 − α)f(x) < f(x∗),

so f decreases monotonically along the line segment connecting x∗ and x. This
contradicts the hypothesis that x∗ is a local minimum of f along any line passing
through x∗.

† This set of exercises will be periodically updated as new exercises are added.

Many of the exercises and solutions given here were developed as part of my

earlier convex optimization book [BNO03] (coauthored with Angelia Nedić and

Asuman Ozdaglar), and are posted on the internet of that book’s web site. The

contribution of my coauthors in the development of these exercises and their

solutions is gratefully acknowledged. Since some of the exercises and/or their

solutions have been modified and also new exercises have been added, all errors

are my sole responsibility.
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(b) We first show that the function g : ℜ 7→ ℜ defined by g(α) = f(x∗ + αd) has
a local minimum at α = 0 for all d ∈ ℜ2. We have

g(α) = f(x∗ + αd) = (αd2 − pα2d2
1)(αd2 − qα2d2

1) = α2(d2 − pαd2
1)(d2 − qαd2

1).

Also,

g′(α) = 2α(d2 −pαd2
1)(d2 − qαd2

1)+α2(−pd2
1)(d2 − qαd2

1)+α2(d2 −pαd2
1)(−qd2

1).

Thus g′(0) = 0. Furthermore,

g′′(α) = 2(d2 − pαd2
1)(d2 − qαd2

1) + 2α(−pd2
1)(d2 − qαd2

1)

+ 2α(d2 − pαd2
1)(−qd2

1) + 2α(−pd2
1)(d2 − qαd2

1) + α2(−pd2
1)(−qd2

1)

+ 2α(d2 − pαd2
1)(−qd2

1) + α2(−pd2
1)(−qd2

1).

Thus g′′(0) = 2d2
2, which is positive if d2 6= 0. If d2 = 0, g(α) = pqα4d4

1, which is
clearly minimized at α = 0. Therefore, (0, 0) is a local minimum of f along every
line that passes through (0, 0).

We now show that if p < m < q, f(y, my2) < 0 if y 6= 0 and that
f(y, my2) = 0 otherwise. Consider a point of the form (y, my2). We have
f(y, my2) = y4(m − p)(m − q). Clearly, f(y, my2) < 0 if and only if p < m < q
and y 6= 0. In any ǫ−neighborhood of (0, 0), there exists a y 6= 0 such that for
some m ∈ (p, q), (y, my2) also belongs to the neighborhood. Since f(0, 0) = 0,
we see that (0, 0) is not a local minimum.

3.2 (Equality-Constrained Quadratic Programming)

(a) Consider the quadratic program

minimize 1
2
‖x‖2 + c′x

subject to Ax = 0,
(3.1)

where c ∈ ℜn and A is an m × n matrix of rank m. Use the Projection
Theorem to show that

x∗ = −
(

I − A′(AA′)−1A
)

c (3.2)

is the unique solution.

(b) Consider the more general quadratic program

minimize 1
2 (x − x)′Q(x − x) + c′(x − x)

subject to Ax = b,
(3.3)

where c and A are as before, Q is a symmetric positive definite matrix,
b ∈ ℜm, and x is a vector in ℜn, which is feasible, i.e., satisfies Ax = b.
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Use the transformation y = Q1/2(x − x) to write this problem in the form
of part (a) and show that the optimal solution is

x∗ = x − Q−1(c − A′λ),

where λ is given by

λ =
(

AQ−1A′)−1
AQ−1c.

(c) Apply the result of part (b) to the program

minimize 1
2x′Qx + c′x

subject to Ax = b,

and show that the optimal solution is

x∗ = −Q−1
(

c − A′λ − A′(AQ−1A′)−1b
)

.

Solution: (a) By adding the constant term 1
2‖c‖2 to the cost function, we can

equivalently write this problem as

minimize 1
2
‖c + x‖2

subject to Ax = 0,

which is the problem of projecting the vector −c on the subspace X = {x | Ax =
0}. By the optimality condition for projection, a vector x∗ such that Ax∗ = 0 is
the unique projection if and only if

(c + x∗)′x = 0, ∀ x with Ax = 0.

It can be seen that the vector

x∗ = −
(

I − A′(AA′)−1A
)

c (3.4)

satisfies this condition and is thus the unique solution of the quadratic program-
ming problem (3.1). (The matrix AA′ is invertible because A has rank m.)

(b) By introducing the transformation y = Q1/2(x−x), we can write the problem
as

minimize 1
2‖y‖

2 +
(

Q−1/2c
)′

y

subject to AQ−1/2y = 0.

Using Eq. (3.4) we see that the solution of this problem is

y∗ = −
(

I − Q−1/2A′ (AQ−1A′)−1
AQ−1/2

)

Q−1/2c

and by passing to the x-coordinate system through the inverse transformation
x∗ − x = Q−1/2y∗, we obtain the optimal solution

x∗ = x − Q−1(c − A′λ), (3.5)
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where λ is given by

λ =
(

AQ−1A′)−1
AQ−1c. (3.6)

The quadratic program (3.3) contains as a special case the program

minimize 1
2x′Qx + c′x

subject to Ax = b.
(3.7)

This special case is obtained when x is given by

x = Q−1A′(AQ−1A′)−1b. (3.8)

Indeed x as given above satisfies Ax = b as required, and for all x with Ax = b,
we have

x′Qx = x′A′(AQ−1A′)−1b = b′(AQ−1A′)−1b,

which implies that for all x with Ax = b,

1
2
(x−x)′Q(x−x)+c′(x−x) = 1

2
x′Qx+c′x+

(

1
2
x′Qx−c′x−b′(AQ−1A′)−1b

)

.

The last term in parentheses on the right-hand side above is constant, thus estab-
lishing that the programs (3.3) and (3.7) have the same optimal solution when x
is given by Eq. (3.8). By combining Eqs. (3.5) and (3.8), we obtain the optimal
solution of program (3.7):

x∗ = −Q−1
(

c − A′λ − A′(AQ−1A′)−1b
)

,

where λ is given by Eq. (3.6).

3.3 (Approximate Minima of Convex Functions)

Let X be a closed convex subset of ℜn, and let f : ℜn 7→ (−∞,∞] be a closed
convex function such that X ∩ dom(f) 6= Ø. Assume that f and X have no
common nonzero direction of recession. Let X∗ be the set of minima of f over
X (which is nonempty and compact by Prop. 3.2.2), and let f∗ = infx∈X f(x).
Show that:

(a) For every ǫ > 0 there exists a δ > 0 such that every vector x ∈ X with
f(x) ≤ f∗ + δ satisfies minx∗∈X∗ ‖x − x∗‖ ≤ ǫ.

(b) If f is real-valued, for every δ > 0 there exists an ǫ > 0 such that every
vector x ∈ X with minx∗∈X∗ ‖x − x∗‖ ≤ ǫ satisfies f(x) ≤ f∗ + δ.

(c) Every sequence {xk} ⊂ X satisfying f(xk) → f∗ is bounded and all its
limit points belong to X∗.

Solution: (a) Let ǫ > 0 be given. Assume, to arrive at a contradiction, that for
any sequence {δk} with δk ↓ 0, there exists a sequence {xk} ∈ X such that for
all k

f∗ ≤ f(xk) ≤ f∗ + δk, min
x∗∈X∗

‖xk − x∗‖ ≥ ǫ.

5



It follows that, for all k, xk belongs to the set
{

x ∈ X | f(x) ≤ f∗ + δ0

}

, which
is compact since f and X are closed and have no common nonzero direction of
recession. Therefore, the sequence {xk} has a limit point x ∈ X, which using
also the lower semicontinuity of f , satisfies

f(x) ≤ lim inf
k→∞

f(xk) = f∗, ‖x − x∗‖ ≥ ǫ, ∀ x∗ ∈ X∗,

a contradiction.

(b) Let δ > 0 be given. Assume, to arrive at a contradiction, that there exist
sequences {xk} ⊂ X, {x∗

k} ⊂ X∗, and {ǫk} with ǫk ↓ 0 such that

f(xk) > f∗ + δ, ‖xk − x∗
k‖ ≤ ǫk, ∀ k = 0, 1, . . .

(here x∗
k is the projection of xk on X∗). Since X∗ is compact, there is a

subsequence {x∗
k}K that converges to some x∗ ∈ X∗. It follows that {xk}K

also converges to x∗. Since f is real-valued, it is continuous, so we must have
f(xk) → f(x∗), a contradiction.

(c) Let x be a limit point of the sequence {xk} ⊂ X satisfying f(xk) → f∗. By
lower semicontinuity of f , we have that

f(x) ≤ lim inf
k→∞

f(xk) = f∗.

Because {xk} ⊂ X and X is closed, we have x ∈ X, which in view of the preceding
relation implies that f(x) = f∗, i.e., x ∈ X∗.

SECTION 3.2: Existence of Optimal Solutions

3.4 (Minimization of Quasiconvex Functions)

We say that a function f : ℜn 7→ (−∞,∞] is quasiconvex if all its level sets

Vγ =
{

x | f(x) ≤ γ
}

are convex. Let X be a convex subset of ℜn, let f be a quasiconvex function such
that X ∩ dom(f) 6= Ø, and denote f∗ = infx∈X f(x).

(a) Assume that f is not constant on any line segment of X, i.e., we do not
have f(x) = c for some scalar c and all x in the line segment connecting
any two distinct points of X. Show that every local minimum of f over X
is also global.

(b) Assume that X is closed, and f is closed and proper. Let Γ be the set of
all γ > f∗, and denote

Rf = ∩γ∈ΓRγ , Lf = ∩γ∈ΓLγ ,

where Rγ and Lγ are the recession cone and the lineality space of Vγ ,
respectively. Use the line of proof of Prop. 3.2.4 to show that f attains a
minimum over X if any one of the following conditions holds:
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(1) RX ∩ Rf = LX ∩ Lf .

(2) RX ∩ Rf ⊂ Lf , and X is a polyhedral set.

Solution: (a) Let x∗ be a local minimum of f over X and assume, to arrive at
a contradiction, that there exists a vector x ∈ X such that f(x) < f(x∗). Then,
x and x∗ belong to the set X ∩ Vγ∗ , where γ∗ = f(x∗). Since this set is convex,
the line segment connecting x∗ and x belongs to the set, implying that

f
(

αx + (1 − α)x∗) ≤ γ∗ = f(x∗), ∀ α ∈ [0, 1]. (3.9)

For each integer k ≥ 1, there must exist an αk ∈ (0, 1/k] such that

f
(

αkx + (1 − αk)x∗) < f(x∗), for some αk ∈ (0, 1/k]; (3.10)

otherwise, in view of Eq. (3.9), we would have that f(x) is constant for x on
the line segment connecting x∗ and (1/k)x +

(

1 − (1/k)
)

x∗. Equation (3.10)
contradicts the local optimality of x∗.

(b) We consider the level sets

Vγ =
{

x | f(x) ≤ γ
}

for γ > f∗. Let {γk} be a scalar sequence such that γk ↓ f∗. Using the fact
that for two nonempty closed convex sets C and D such that C ⊂ D, we have
RC ⊂ RD, it can be seen that

Rf = ∩γ∈ΓRγ = ∩∞
k=1Rγk

.

Similarly, Lf can be written as

Lf = ∩γ∈ΓLγ = ∩∞
k=1Lγk

.

Under each of the conditions (1) and (2), we will show that the set of minima of
f over X, which is given by

X∗ = ∩∞
k=1(X ∩ Vγk

)

is nonempty.
Let condition (1) hold. The sets X ∩ Vγk

are nonempty, closed, convex,
and nested. Furthermore, for each k, their recession cone is given by RX ∩ Rγk

and their lineality space is given by LX ∩ Lγk
. We have that

∩∞
k=1(RX ∩ Rγk

) = RX ∩ Rf ,

and
∩∞

k=1(LX ∩ Lγk
) = LX ∩ Lf ,

while by assumption RX ∩ Rf = LX ∩ Lf . Then it follows by Prop. 3.2.4 that
X∗ is nonempty.

Let condition (2) hold. The sets Vγk
are nested and the intersection X∩Vγk

is nonempty for all k. We also have by assumption that RX ∩Rf ⊂ Lf and X is
a polyhedral set. By Prop. 3.2.4, it follows that X∗ is nonempty.
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3.5 (Properties of Quasiconvex Functions)

Show the following properties of quasiconvex functions (cf. Exercise 3.4):

(a) A function f : ℜn 7→ (−∞,∞] is quasiconvex if and only if

f
(

αx + (1 − α)y
)

≤ max
{

f(x), f(y)
}

, ∀ x, y ∈ ℜn, α ∈ [0, 1]. (3.11)

(b) A differentiable function f : ℜn 7→ (−∞,∞) is quasiconvex if and only if

f(y) ≤ f(x) ⇒ ∇f(x)′(y − x) ≤ 0, ∀ x, y ∈ ℜn.

(c) If f : ℜn 7→ [−∞,∞] is a quasiconvex function, A is a matrix and b is a
vector, the function

g(x) = f(Ax + b), x ∈ ℜn,

is quasiconvex.

Solution: (a) Let f be quasiconvex. If either f(x) = ∞ or f(y) = ∞, then Eq.
(3.11) holds, so assume that

max
{

f(x), f(y)
}

< ∞.

Consider the level set

L =
{

z
∣

∣

∣
f(z) ≤ max

{

f(x), f(y)
}

}

.

Since x and y belong to L, and by quasiconvexity, L is convex, we have αx+(1−
α)y ∈ L for all α ∈ [0, 1], so Eq. (3.11) holds.

Conversely, let Eq. (3.11) hold, and consider two points x and y in a level
set

{

x | f(x) ≤ γ
}

. For any α ∈ [0, 1], we have

f
(

αx + (1 − α)y
)

≤ max
{

f(x), f(y)
}

≤ γ,

so the level set
{

x | f(x) ≤ γ
}

is convex, implying that f is quasiconvex.

(b) Let f be quasiconvex, and let x and y be such that f(y) ≤ f(x). Assume,
to arrive at a contradiction, that ∇f(x)′(y − x) > 0. Then by Taylor’s Theorem,
we have f

(

x + ǫ(y − x)
)

> f(x) for all sufficiently small ǫ > 0. This contradicts
Eq. (3.11), which holds by quasiconvexity of f , as shown in part (a).

Conversely, assume that

f(y) ≤ f(x) ⇒ ∇f(x)′(y − x) ≤ 0, ∀ x, y ∈ ℜn. (3.12)

Note that in one dimension, this relation implies that if we have

f(z) > max
{

f(x), f(y)
}
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for some point z in the line segment connecting x and y, then the slope of f at z
is zero. This shows that we cannot have f(z) > max

{

f(x), f(y)
}

for any z in the
line segment connecting x and y, and by part (a) proves that f is quasiconvex.
This is the idea underlying the following argument.

Assume, to arrive at a contradiction, that f is not quasiconvex, so that, by
part (a), there exist x and y, and α ∈ (0, 1) such that f(y) ≤ f(x) and

f(z) > max
{

f(x), f(y)
}

= f(x),

where
z = αx + (1 − α)y.

By the continuity of f , there exists a scalar β ∈ (α, 1] such that

f
(

αx + (1 − α)y
)

> f(x), ∀ α ∈ (α, β),

and

f(w) = f(x),

where
w = βx + (1 − β)y.

Using the Mean Value Theorem, it follows that there exists γ ∈ (α, β) such that

∇f(w)′(z − w) = f(z) − f(w) > 0,

where
w = γx + (1 − γ)y.

Since the vector z − w is colinear with the vector y − w, follows that

∇f(w)′(y − w) > 0,

which contradicts Eq. (3.12), since by construction we have

f(y) ≤ f(x) = f(w) ≤ f(w).

(c) To show that g is quasiconvex, we must show that for all γ ∈ ℜ, the set

Vγ =
{

x | f(Ax + b) ≤ γ
}

is convex. We have
Vγ = {x | Ax + b = y, y ∈ Lγ},

where
Lγ =

{

y | f(y) ≤ γ
}

.

Since f is convex, it follows that Lγ is convex, which implies that Vγ is convex.
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3.6 (Directions Along Which a Function is Flat)

The purpose of the exercise is to provide refinements of results relating to set
intersections and existence of optimal solutions. Let f : ℜn 7→ (−∞,∞] be a
closed proper convex function, and let Ff be the set of all directions y such that
for every x ∈ dom(f), the limit limα→∞ f(x + αy) exists. We refer to Ff as the
set of directions along which f is flat . Note that

Lf ⊂ Ff ⊂ Rf ,

where Lf and Rf are the constancy space and recession cone of f , respectively.
Let X be a subset of ℜn specified by linear inequality constraints, i.e.,

X = {x | a′
jx ≤ bj , j = 1, . . . , r},

where aj are vectors in ℜn and bj are scalars. Assume that

RX ∩ Ff ⊂ Lf ,

where RX is the recession cone of X.

(a) Let
Ck =

{

x | f(x) ≤ wk

}

,

where {wk} is a monotonically decreasing and convergent scalar sequence,
and assume that X ∩ Ck 6= Ø for all k. Show that

X ∩
(

∩∞
k=0Ck

)

6= Ø.

(b) Show that if infx∈X f(x) is finite, the function f attains a minimum over
the set X.

(c) Show by example that f need not attain a minimum over X if we just
assume that X ∩ dom(f) 6= Ø.

Solution: (a) We use induction on the dimension of the set X. Suppose that
the dimension of X is 0. Then X consists of a single point. This point belongs
to X ∩ Ck for all k, and hence belongs to the intersection X ∩

(

∩∞
k=0Ck

)

.

Assume that, for some l < n, the intersection X ∩
(

∩∞
k=0Ck

)

is nonempty

for every set X of dimension less than or equal to l that is specified by linear
inequality constraints, and is such that X∩Ck is nonempty for all k and RX∩Ff ⊂
Lf . Let X be of the form

X = {x | a′
jx ≤ bj , j = 1, . . . , r},

and be such that X ∩ Ck is nonempty for all k, satisfy RX ∩ Ff ⊂ Lf , and have
dimension l + 1. We will show that the intersection X ∩

(

∩∞
k=0Ck

)

is nonempty.
If LX ∩Lf = RX ∩ Rf , then by Prop. 3.2.4 applied to the sets X ∩ Ck, we

have that X ∩
(

∩∞
k=0Ck

)

is nonempty, and we are done. We may thus assume
that LX ∩ Lf 6= RX ∩ Rf . Let y ∈ RX ∩ Rf with −y /∈ RX ∩ Rf .
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If y /∈ Ff , then, since y ∈ RX ∩ Rf , for all x ∈ X ∩ dom(f) we have
limα→∞ f(x + αy) = −∞ and x + αy ∈ X for all α ≥ 0. Therefore, x + αy ∈
X ∩

(

∩∞
k=0Ck

)

for sufficiently large α, and we are done.
We may thus assume that y ∈ Ff , so that y ∈ RX ∩ Ff and therefore also

y ⊂ Lf , in view of the hypothesis RX ∩Ff ⊂ Lf . Since −y /∈ RX ∩Rf , it follows
that −y /∈ RX . Thus, we have

y ∈ RX , −y 6∈ RX , y ∈ Lf .

Using Prop. 1.4.2(c), it is seen that the recession cone of X is

RX = {y | a′
jy ≤ 0, j = 1, . . . , r},

so the fact y ∈ RX implies that

a′
jy ≤ 0, ∀ j = 1, . . . , r,

while the fact −y /∈ RX implies that the index set

J = {j | a′
jy < 0}

is nonempty.
Consider a sequence {xk} such that

xk ∈ X ∩ Ck, ∀ k.

We then have
a′

jxk ≤ bj , ∀ j = 1, . . . , r, ∀ k.

We may assume that

a′
jxk < bj , ∀ j ∈ J, ∀ k;

otherwise we can replace xk with xk + y, which belongs to X ∩Ck (since y ∈ RX

and y ∈ Lf ).
Suppose that for each k, we start at xk and move along −y as far as possible

without leaving the set X, up to the point where we encounter the vector

xk = xk − βky,

where βk is the positive scalar given by

βk = min
j∈J

a′
jxk − bj

a′
jy

.

Since a′
jy = 0 for all j /∈ J , we have a′

jxk = a′
jxk for all j /∈ J , so the number

of linear inequalities of X that are satisfied by xk as equalities is strictly larger
than the number of those satisfied by xk. Thus, there exists j0 ∈ J such that
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a′
j0

xk = bj0 for all k in an infinite index set K ⊂ {0, 1, . . .}. By reordering the
linear inequalities if necessary, we can assume that j0 = 1, i.e.,

a′
1xk = b1, a′

1xk < b1, ∀ k ∈ K.

To apply the induction hypothesis, consider the set

X = {x | a′
1x = b1, a′

jx ≤ bj , j = 2, . . . , r},

and note that {xk}K ⊂ X. Since xk = xk − βky with xk ∈ Ck and y ∈ Lf ,
we have xk ∈ Ck for all k, implying that xk ∈ X ∩ Ck for all k ∈ K. Thus,
X ∩ Ck 6= Ø for all k. Because the sets Ck are nested, so are the sets X ∩ Ck.
Furthermore, the recession cone of X is

R
X

= {y | a′
1y = 0, a′

jy ≤ 0, j = 2, . . . , r},

which is contained in RX , so that

R
X

∩ Ff ⊂ RX ∩ Ff ⊂ Lf .

Finally, to show that the dimension of X is smaller than the dimension of X, note
that the set {x | a′

1x = b1} contains X, so that a1 is orthogonal to the subspace
S

X
that is parallel to aff(X). Since a′

1y < 0, it follows that y /∈ S
X

. On the
other hand, y belongs to SX , the subspace that is parallel to aff(X), since for all
k, we have xk ∈ X and xk − βky ∈ X.

Based on the preceding, we can use the induction hypothesis to assert
that the intersection X ∩

(

∩∞
k=0Ck

)

is nonempty. Since X ⊂ X, it follows that

X ∩
(

∩∞
k=0Ck

)

is nonempty.

(b) Denote
f∗ = inf

x∈X
f(x),

and assume without loss of generality that f∗ = 0 [otherwise, we replace f(x) by
f(x)−f∗]. We choose a scalar sequence {wk} such that wk ↓ f∗, and we consider
the (nonempty) level sets

Ck =
{

x ∈ ℜn | f(x) ≤ wk

}

.

The set X∩Ck is nonempty for all k. Furthermore, by assumption, RX∩Ff ⊂ Lf

and X is specified by linear inequality constraints. By part (a), it follows that
X ∩

(

∩∞
k=0Ck

)

, the set of minimizers of f over X, is nonempty.

(c) Let X = ℜ and f(x) = x. Then

Ff = Lf =
{

y | y = 0
}

,

so the condition RX ∩Ff ⊂ Lf is satisfied. However, we have infx∈X f(x) = −∞
and f does not attain a minimum over X.
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3.7 (Bidirectionally Flat Functions - Intersections of Sets
Defined by Quadratic Functions)

The purpose of the exercise is to provide refinements of various results relating
to set intersections, closedness under linear transformations, existence of optimal
solutions, and closedness under partial minimization. Important special cases
arise when the sets involved are defined by convex quadratic functions.

Let f : ℜn 7→ (−∞,∞] be a closed proper convex function, and let Ff be
the set of directions along which f is flat (cf. Exercise 3.6). We say that f is
bidirectionally flat if Lf = Ff (i.e., if it is flat in some direction it must be flat,
and hence constant, in the opposite direction). Note that every convex quadratic
function is bidirectionally flat. More generally, a function of the form

f(x) = h(Ax) + c′x,

where A is an m × n matrix and h : ℜm 7→ (−∞,∞] is a coercive closed proper
convex function, is bidirectionally flat. In this case, we have

Lf = Ff = {y | Ay = 0, c′y = 0}.

Let gj : ℜn 7→ (−∞,∞], j = 0, 1, . . . , r, be closed proper convex functions
that are bidirectionally flat.

(a) Assume that each vector x such that g0(x) ≤ 0 belongs to ∩r
j=1dom(gj),

and that for some scalar sequence {wk} with wk ↓ 0, the set

Ck =
{

x | g0(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r
}

is nonempty for each k. Show that the intersection ∩∞
k=0Ck is nonempty.

(b) Assume that each gj , j = 1, . . . , r, is real-valued and the set

C =
{

x | gj(x) ≤ 0, j = 1, . . . , r
}

is nonempty. Show that for any m × n matrix A, the set AC is closed.

(c) Show that a closed proper convex function f : ℜn 7→ (−∞,∞] that is
bidirectionally flat attains a minimum over the set C of part (b), provided
that infx∈C f(x) is finite.

Solution: (a) As a first step, we will show that either ∩∞
k=1Ck 6= Ø or else

there exists j ∈ {1, . . . , r} and y ∈ ∩r
j=0Rgj with y /∈ Fg

j
.

Let x be a vector in C0, and for each k ≥ 1, let xk be the projection of x on
Ck. If {xk} is bounded, then since the gj are closed, any limit point x̃ of {xk}
satisfies

gj(x̃) ≤ lim inf
k→∞

gj(xk) ≤ 0,

so x̃ ∈ ∩∞
k=1Ck, and ∩∞

k=1Ck 6= Ø. If {xk} is unbounded, let y be a limit point
of the sequence

{

(xk − x)/‖xk − x‖ | xk 6= x
}

, and without loss of generality,
assume that

xk − x

‖xk − x‖ → y.
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We claim that
y ∈ ∩r

j=0Rgj .

Indeed, if for some j, we have y /∈ Rgj , then there exists α > 0 such that
gj(x + αy) > w0. Let

zk = x + α
xk − x

‖xk − x‖ ,

and note that for sufficiently large k, zk lies in the line segment connecting x and
xk, so that g1(zk) ≤ w0. On the other hand, we have zk → x + αy, so using the
closedness of gj , we must have

gj(x + αy) ≤ lim inf
k→∞

g1(zk) ≤ w0,

which contradicts the choice of α to satisfy gj(x + αy) > w0.
If y ∈ ∩r

j=0Fgj , since all the gj are bidirectionally flat, we have y ∈ ∩r
j=0Lgj .

If the vectors x and xk, k ≥ 1, all lie in the same line [which must be the line
{x + αy | α ∈ ℜ}], we would have gj(x) = gj(xk) for all k and j. Then it follows
that x and xk all belong to ∩∞

k=1Ck. Otherwise, there must be some xk, with
k large enough, and such that, by the Projection Theorem, the vector xk − αy
makes an angle greater than π/2 with xk − x. Since the gj are constant on the
line {xk − αy | α ∈ ℜ}, all vectors on the line belong to Ck, which contradicts
the fact that xk is the projection of x on Ck.

Finally, if y ∈ Rg0 but y /∈ Fg0 , we have g0(x + αy) → −∞ as α → ∞, so
that ∩∞

k=1Ck 6= Ø. This completes the proof that

∩∞
k=1Ck = Ø ⇒ there exists j ∈ {1, . . . , r} and y ∈ ∩r

j=0Rj with y /∈ Fg
j
.

(3.13)
We now use induction on r. For r = 0, the preceding proof shows that

∩∞
k=1Ck 6= Ø. Assume that ∩∞

k=1Ck 6= Ø for all cases where r < r. We will show
that ∩∞

k=1Ck 6= Ø for r = r. Assume the contrary. Then, by Eq. (3.13), there
exists j ∈ {1, . . . , r} and y ∈ ∩r

j=0Rj with y /∈ Fg
j
. Let us consider the sets

Ck =
{

x | g0(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r, j 6= j
}

.

Since these sets are nonempty, by the induction hypothesis, ∩∞
k=1Ck 6= Ø. For any

x̃ ∈ ∩∞
k=1Ck, the vector x̃+αy belongs to ∩∞

k=1Ck for all α > 0, since y ∈ ∩r
j=0Rj .

Since g0(x̃) ≤ 0, we have x̃ ∈ dom(gj), by the hypothesis regarding the domains
of the gj . Since y ∈ ∩r

j=0Rj with y /∈ Fg
j
, it follows that gj(x̃ + αy) → −∞ as

α → ∞. Hence, for sufficiently large α, we have gj(x̃+αy) ≤ 0, so x̃+αy belongs
to ∩∞

k=1Ck.

Note: To see that the assumption

{

x | g0(x) ≤ 0
}

⊂ ∩r
j=1dom(gj)

is essential for the result to hold, consider an example in ℜ2. Let

g0(x1, x2) = x1, g1(x1, x2) = φ(x1) − x2,
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where the function φ : ℜ 7→ (−∞,∞] is convex, closed, and coercive with
dom(φ) = (0, 1) [for example, φ(t) = − ln t − ln(1 − t) for 0 < t < 1]. Then
it can be verified that Ck 6= Ø for every k and sequence {wk} ⊂ (0, 1) with
wk ↓ 0 [take x1 ↓ 0 and x2 ≥ φ(x1)]. On the other hand, we have ∩∞

k=0Ck = Ø.
The difficulty here is that the set

{

x | g0(x) ≤ 0
}

, which is equal to

{x | x1 ≤ 0, x2 ∈ ℜ},

is not contained in dom(g1), which is equal to

{x | 0 < x1 < 1, x2 ∈ ℜ}

(in fact the two sets are disjoint).

(b) Let {yk} be a sequence in AC converging to some y ∈ ℜn. We will show that
y ∈ A C. We let

g0(x) = ‖Ax − y‖2, wk = ‖yk − y‖2,

and
Ck =

{

x | g0(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r
}

.

The functions involved in the definition of Ck are bidirectionally flat, and each Ck

is nonempty by construction. By applying part (a), we see that the intersection
∩∞

k=0Ck is nonempty. For any x in this intersection, we have Ax = y (since
yk → y), showing that y ∈ A C.

(c) Denote
f∗ = inf

x∈C
f(x),

and assume without loss of generality that f∗ = 0 [otherwise, we replace f(x) by
f(x)−f∗]. We choose a scalar sequence {wk} such that wk ↓ f∗, and we consider
the (nonempty) sets

Ck =
{

x ∈ ℜn | f(x) ≤ wk, gj(x) ≤ 0, j = 1, . . . , r
}

.

By part (a), it follows that ∩∞
k=0Ck, the set of minimizers of f over C, is nonempty.

SECTION 3.3: Partial Minimization of Convex Functions

3.8 (Asymptotic Slopes of Functions of Two Vectors)

Let F : ℜn+m 7→ (−∞,∞] be a closed proper convex function of two vectors
x ∈ ℜn and z ∈ ℜm, and let

X =
{

x | inf
z∈ℜm

F (x, z) < ∞
}

.

Assume that the function F (x, ·) is closed for each x ∈ X. Show that:
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(a) If for some x ∈ X, the minimum of F (x, ·) over ℜm is attained at a
nonempty and compact set, the same is true for all x ∈ X.

(b) If the functions F (x, ·) are differentiable for all x ∈ X, they have the same
asymptotic slopes along all directions, i.e., for each d ∈ ℜm, the value of
limα→∞ ∇zF (x, z + αd)′d is the same for all x ∈ X and z ∈ ℜm.

Solution: By Prop. 1.4.5(a), the recession cone of F has the form

RF =
{

(dx, dz) | (dx, dz, 0) ∈ Repi(F )

}

.

The (common) recession cone of the nonempty level sets of F (x, ·), x ∈ X, has
the form

{

dz | (0, dz) ∈ RF

}

,

for all x ∈ X, where RF is the recession cone of F . Furthermore, the recession
function of F (x, ·) is the same for all x ∈ X.

(a) By the compactness hypothesis, the recession cone of F (x, ·) consists of just
the origin, so the same is true for the recession cones of all F (x, ·), x ∈ X. Thus
the nonempty level sets of F (x, ·), x ∈ X, are all compact.

(b) This is a consequence of the fact that the recession function of F (x, ·) is the
same for all x ∈ X, and the comments following Prop. 1.4.7.

3.9 (Partial Minimization)

(a) Let f : ℜn 7→ [−∞,∞] be a function and consider the subset of ℜn+1 given
by

Ef =
{

(x, w) | f(x) < w
}

.

Show that Ef is related to the epigraph of f as follows:

Ef ⊂ epi(f) ⊂ cl(Ef ).

Show also that f is convex if and only if Ef is convex.

(b) Let F : ℜm+n 7→ [−∞,∞] be a function and let

f(x) = inf
z∈ℜm

F (x, z), x ∈ ℜn.

Show that Ef is the projection of the set
{

(x, z, w) | F (x, z) < w
}

on the
space of (x, w).

(c) Use parts (a) and (b) to show that convexity of F implies convexity of f
[this shows Prop. 3.3.1(a) by a somewhat different argument, which does
not rely on the assumption F (x, z) > −∞ for all (x, z)].

Solution: (a) We clearly have Ef ⊂ epi(f). Let (x,w) ∈ epi(f), so that f(x) ≤
w. Let {wk} be a decreasing sequence such that wk → w, so that f(x) < wk and
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(x, wk) ∈ Ef for all k. Since (x,wk) → (x,w), it follows that (x, w) ∈ cl(Ef ).
Hence, epi(f) ⊂ cl(Ef ).

Let f be convex, and let (x, w), (y, v) ∈ Ef . Then for any α ∈ [0, 1], we
have

f
(

αx + (1 − α)y
)

≤ αf(x) + (1 − α)f(y) < αw + (1 − α)v.

It follows that
(

αx + (1 − α)y,αw + (1 − α)v
)

∈ Ef , so that Ef is convex.

Let Ef be convex, and for any x, y ∈ dom(f), let
{

(x,wk)
}

,
{

(y, vk)
}

be
sequences in Ef such that wk ↓ f(x) and vk ↓ f(y), respectively [we allow the
possibility that f(x) and/or f(y) are equal to −∞]. Since Ef is convex, we have

f
(

αx + (1 − α)y
)

< αwk + (1 − α)vk, ∀ α ∈ [0, 1], k = 0, 1, . . . .

Taking the limit as k → ∞, we obtain

f
(

αx + (1 − α)y
)

≤ αf(x) + (1 − α)f(y), ∀ α ∈ [0, 1],

so f is convex.

(b) We have f(x) < w if and only if there exists z ∈ ℜm such that F (x, z) < w:

Ef =
{

(x,w) | F (x, z) < w for some z ∈ ℜm
}

.

Thus Ef is the projection of the set
{

(x, z, w) | F (x, z) < w
}

on the space of
(x, w).

(c) If F is convex, by part (a) the set
{

(x, z, w) | F (x, z) < w
}

is convex, and by
part (b), Ef is the image of this set under a linear transformation. Therefore,
Ef is convex, so by part (a), f is convex.

3.10 (Closures of Partially Minimized Functions)

Consider a function F : ℜn+m 7→ (−∞,∞] and the function f : ℜn 7→ [−∞,∞]
defined by

f(x) = inf
z∈ℜm

F (x, z).

(a) Show that
P

(

cl
(

epi(F )
))

⊂ cl
(

epi(f)
)

,

where P (·) denotes projection on the space of (x, w).

(b) Let f be defined by
f(x) = inf

z∈ℜm
(cl F )(x, z),

where cl F is the closure of F . Show that the closures of f and f coincide.

Solution: (a) We first note that from Prop. 3.3.1, we have

P
(

epi(F )
)

⊂ epi(f) ⊂ cl
(

P
(

epi(F )
)

)

, (3.14)
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where P (·) denotes projection on the space of (x,w). To show the equation

P
(

cl
(

epi(F )
))

⊂ cl
(

epi(f)
)

, (3.15)

let (x, w) belong to P
(

cl
(

epi(F )
))

. Then there exists z such that (x, z, w) ∈
cl

(

epi(F )
)

, and hence there is a sequence (xk, zk, wk) ∈ epi(F ) such that xk → x,
zk → z, and wk → w. Thus we have f(xk) ≤ F (xk, zk) ≤ wk, implying that
(xk, wk) ∈ epi(f) for all k. It follows that (x, w) ∈ cl

(

epi(f)
)

.

(b) By taking closure in Eq. (3.14), we see that

cl
(

epi(f)
)

= cl
(

P
(

epi(F )
)

)

. (3.16)

Denoting F = cl F and replacing F with F , we also have

cl
(

epi(f)
)

= cl
(

P
(

epi(F )
)

)

. (3.17)

On the other hand, by taking closure in Eq. (3.15), we have

cl
(

P
(

epi(F )
)

)

⊂ cl
(

P
(

epi(F )
)

)

,

which, in view of epi(F ) ⊃ epi(F ), implies that

cl
(

P
(

epi(F )
)

)

= cl
(

P
(

epi(F )
)

)

. (3.18)

By combining Eqs. (3.16)-(3.18), we see that

cl
(

epi(f)
)

= cl
(

epi(f)
)

.

3.11 (Counterexample for Partially Minimized Functions)

Consider the function of x ∈ ℜ and z ∈ ℜ given by

F (x, z) =
{

e−
√

xz if x ≥ 0, z ≥ 0,
∞ otherwise.

Verify that F convex and closed, but that the function f(x) = infz∈ℜ F (x, z) is
convex but not closed.

Solution: To prove that F is convex, we note that it is the composition of the
monotonically increasing exponential function, and the function −√

xz which can
be shown to convex over

{

(x, z) | x ≥ 0, z ≥ 0
}

(one way to do this is to use
Prop. 1.1.7). It is straightforward to verify that f is the nonclosed function

f(x) = inf
z∈ℜ

F (x, z) =

{

0 if x > 0,
1 if x = 0,
∞ if x < 0.

In particular, if x > 0 and ǫ > 0, we have 0 < e−
√

xz < ǫ, provided z is sufficiently
large.
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3.12 (Image Operation)

Let h : ℜm 7→ (−∞,∞] be a function and A be an m × n matrix. Consider the
function A ◦ h : ℜn 7→ [−∞,∞] defined by

(A ◦ h)(x) = inf
Az=x

h(z), x ∈ ℜn. (3.19)

We refer to A ◦ h as the image of h under A. (The terminology comes from the
special case where h is the indicator function of a set; then A ◦ h is the indicator
function of the image of the set under A.)

(a) Show that if h is convex, then A ◦ h is convex.

(b) Assume that h is closed proper convex and that R(A)∩dom(h) 6= Ø, where
R(A) is the range of A. Assume further that every direction of recession of
h that belongs to the nullspace of A is a direction along which h is constant.
Then A◦h is closed proper convex, and for every x ∈ dom(f), the infimum
in the definition of (A ◦ h)(x) is attained. Hint : Use Prop. 3.3.4.

Solution: Consider the function F : ℜn+m 7→ (−∞,∞] given by

F (x, z) =
{

h(z) if Az = x,
∞ otherwise.

We have

(A ◦ h)(x) = inf
z∈ℜm

F (x, z), x ∈ ℜn,

so A ◦ h is obtained from by partial minimization, and its properties follow by
applying the theory of Section 3.3.

(a) By Prop. 3.3.1(a), A ◦ h is convex.

(b) We will use Prop. 3.3.4. Let x be a point in R(A) ∩ dom(h). Choose γ so
that the set

{

z | h(z) ≤ γ, Az = x
}

is nonempty, and note that

{

z | h(z) ≤ γ, Az = x
}

=
{

z | F (x, z) ≤ γ
}

.

From this we see that our assumption that every direction of recession of h that
belongs to the nullspace of A is a direction along which h is constant is equivalent
to the recession cone of

{

z | F (x, z) ≤ γ
}

being equal to its lineality space. Thus
Prop. 3.3.4 applies, and by the conclusion of the proposition, A ◦ h is closed
proper convex, and for every x ∈ dom(A ◦ h), the infimum in the definition of
(A ◦ h)(x) is attained.

3.13 (Infimal Convolution Operation)

Consider the function f : ℜn 7→ [−∞,∞] defined by

f(x) = inf
x1+···+xm=x

{

f1(x1) + · · · + fm(xm)
}

, x ∈ ℜn,
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where for i = 1, . . . , m, fi : ℜn 7→ (−∞,∞] is a closed proper convex function.
The function f is called the infimal convolution of f1, . . . , fm. The terminology
comes from the resemblance with the classical formula of integral convolution in
the case of two functions when f(x) takes the form

inf
z∈ℜn

{

f1(x − z) + f2(z)
}

.

Assume that ∩m
i=1dom(fi) 6= Ø, and furthermore that every d = (d1, . . . , dm)

that is a direction of recession of f1 + · · · + fm and satisfies

d1 + · · · + dm = 0,

is a direction along which f1 + · · · + fm is constant. Show that f is closed
proper convex, and that the infimum in the definition of f(x) is attained for
every x ∈ dom(f). Hint : Show that infimal convolution is a special case of the
image operation of Exercise 3.12, and apply the result of that exercise.

Solution: We can write f as the result of an image operation, (A ◦ h) [cf. Eq.
(3.19)], where h : ℜmn 7→ (−∞,∞] is the function given by

h(x1, . . . , xm) = f1(x1) + · · · + fm(xm),

and A is the n × (mn) matrix defined by

A(x1, . . . , xm) = x1 + · · · + xm.

Our assumption on directions of recession is the same as the assumption of Ex-
ercise 3.12(b), specialized to the infimal convolution context.

3.14 (Epigraph Relations for Image and Infimal Convolution)

Consider the image operation A ◦ h of Exercise 3.12, and the relation

(A ◦ h)(x) = inf
z∈ℜm

F (x, z), x ∈ ℜn,

where F : ℜn+m 7→ (−∞,∞] is given by

F (x, z) =
{

h(z) if Az = x,
∞ otherwise.

(a) Show that the epigraph relation

P
(

epi(F )
)

⊂ epi(f) ⊂ cl
(

P
(

epi(F )
)

)

where P (·) denotes projection on the space of (x,w) [cf. Prop. 3.3.1(b)]
takes the form

A epi(h) ⊂ epi(f) ⊂ cl
(

A epi(h)
)

,
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where A is the linear transformation that maps a vector (x,w) ∈ ℜn+1 to
(Ax,w).

(b) Show that in the special case of the infimal convolution operation (cf. Ex-
ercise 3.13) the epigraph relation takes the form

epi(f1) + · · · + epi(fm) ⊂ epi(f) ⊂ cl
(

epi(f1) + · · · + epi(fm)
)

.

Solution: In the case of the image operation, we have

epi(F ) =
{

(x, z, w) | Az = x, h(z) ≤ w
}

,

so that

P
(

epi(F )
)

=
{

(x, w) | for some z with Az = x, h(z) ≤ w
}

=
{

(Az, w) | h(z) ≤ w
}

= A epi(h).

We thus obtain
A epi(h) ⊂ epi(f) ⊂ cl

(

A epi(h)
)

.

(b) Similar to part (a).

3.15 (Conjugates of Linear Composition and Image)

Consider the composition of a closed proper convex function f : ℜm 7→ (−∞,∞]
with a linear transformation A, an m× n matrix, i.e., the function f ◦A : ℜn 7→
[−∞,∞] given by

(f ◦ A)(x) = f(Ax).

Consider also the function A′ ◦ f⋆ given by

(A′ ◦ f⋆)(x) = inf
A′z=x

f⋆(z), x ∈ ℜn,

which was called the image function of f⋆ under A′ in Example 3.13. Show that
the conjugate of A′ ◦ f⋆ is f ◦ A, and that the conjugate of f ◦ A is the closure
of A′ ◦ f⋆, provided f ◦ A is proper [which is true if and only if the range of A
contains a point in dom(f)]. Give an example where the conjugate of f ◦ A is
different from A′ ◦ f⋆.

Solution: We have for all z ∈ ℜn,

f(Az) = sup
y

{

z′A′y − f⋆(y)
}

= sup
x

sup
A′y=x

{

z′x − f⋆(y)
}

= sup
x

{

z′x − inf
A′y=x

f⋆(y)
}

= sup
x

{

z′x − (A′ ◦ f⋆)(x)
}

.
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Thus the conjugate of A′◦f⋆ is f ◦A. By the Conjugacy Theorem [Prop. 1.6.1(c)],
the conjugate of f ◦ A is the closure of A′ ◦ f⋆, provided f ◦ A is proper.

Let f⋆ : ℜ2 7→ (−∞,∞] be the closed proper convex function

f⋆(y1, y2) =

{

e−
√

y1y2 if y1 ≥ 0, y2 ≥ 0,
∞ otherwise,

and let A′ be projection on the space of y1, i.e., A′(y1, y2) = y1 (cf. Exercise
3.11). Then for x ≥ 0,

(A′ ◦ f⋆)(x) = inf
A′y=x

f⋆(y) = inf
y1=x

e−
√

y1y2 =
{

0 if x > 0,
1 if x = 0,

while for x < 0,
(A′ ◦ f⋆)(x) = ∞.

Thus A′ ◦ f⋆ is convex proper but not closed.

3.16 (Conjugates of Sum and Infimal Convolution)

Consider the function

(f1 + · · · + fm)(x) = f1(x) + · · · + fm(x),

where fi : ℜn 7→ (−∞,∞], i = 1, . . . , m, are closed proper convex functions, with
conjugates denoted by f⋆

i . Consider also the function f⋆
1 ⊕ · · · ⊕ f⋆

m given by

(f⋆
1 ⊕ · · · ⊕ f⋆

m)(x) = inf
x1+···+xm=x

{

f⋆
1 (x1) + · · · + f⋆

m(xm)
}

, x ∈ ℜn,

which was called the infimal convolution of f⋆
1 , . . . , f⋆

m in Exercise 3.13. Show that
the conjugate of f⋆

1 ⊕ · · ·⊕ f⋆
m is f1 + · · ·+ fm, and the conjugate of f1 + · · ·+ fm

is the closure of f⋆
1 ⊕ · · · ⊕ f⋆

m, provided f1 + · · · + fm is proper [which is true if
and only if ∩m

i=1dom(fi) 6= Ø].

Solution: We have for all y ∈ ℜn,

f1(y) + · · · + fm(y) = sup
x1

{

y′x1 − f⋆
1 (x1)

}

+ · · · + sup
xm

{

y′(xm − f⋆
m(xm)

}

= sup
x1,...,xm

{

y′(x1 + · · · + xm) − f⋆
1 (x1) − · · · − f⋆

m(xm)
}

= sup
x

sup
x1+···+xm=x

{

y′x − f⋆
1 (x1) − · · · − f⋆

m(xm)
}

= sup
x

{

y′x − inf
x1+···+xm=x

{

f⋆
1 (x1) + · · · + f⋆

m(xm)
}

}

= sup
x

{

y′x − (f⋆
1 ⊕ · · · ⊕ f⋆

m)(x)
}

.

Thus the conjugate of f⋆
1 ⊕ · · ·⊕ f⋆

m is f1 + · · ·+ fm. By the Conjugacy Theorem
[Prop. 1.6.1(c)] and given the properness of f1 + · · · + fm, it follows that the
conjugate of f1 + · · · + fm is the closure of f⋆

1 ⊕ · · · ⊕ f⋆
m, provided f1 + · · ·+ fm

is proper.
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Figure 3.1. Visualization and proof of the Proper Separation Lemma of Exercise
3.17. As figure (a) illustrates, we have S ∩ ri(C) = Ø if and only if S and C can
be properly separated (necessarily by a hyperplane whose normal belongs to S⊥).
Thus, S ∩ ri(C) = Ø if and only if there exists y ∈ S⊥ such that σC(y) > 0 and
σC(−y) ≤ 0, as in figure (a). Equivalently, S ∩ ri(C) 6= Ø if and only if for all
y ∈ S⊥ with y 6= 0, we have either

σC(y) > 0, σC(−y) > 0

as in figure (b), or
σC(y) = σC(−y) = 0

as in figure (c). This is equivalent to the statement of Lemma.

3.17 (Proper Separation Lemma)

This exercise and the next one provide machinery that will be used to develop
sharper characterizations of the conjugates of the image and infimal convolution
operations (see Fig. 3.1). Let S be a subspace and let C be a convex set. Then

S ∩ ri(C) 6= Ø

if and only if the support function σC satisfies

σC(y) = σC(−y) = 0, ∀ y ∈ S⊥ with σC(y) ≤ 0.

Solution: Since ri(S) = S, by the Proper Separation Theorem (Prop. 1.5.6), we
have S∩ri(C) = Ø if and only if there exists a hyperplane that properly separates
S and C, i.e., a y ∈ S⊥ such that

sup
x∈C

x′y > 0, inf
x∈C

x′y ≥ 0,

or equivalently,
σC(y) > 0, σC(−y) ≤ 0,

since the sup and inf of x′y over C are the support function values σC(y) and
−σC(−y). This shows the result, as illustrated also in Fig. 3.1.
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3.18 (Relative Interior of Domain and Directions of Recession)

Let S be a subspace of ℜn, let f : ℜn 7→ (−∞,∞] be a proper convex function,
and let f⋆ be its conjugate.

(a) We have
S ∩ ri

(

dom(f)
)

6= Ø

if and only if every direction of recession of f⋆ that belongs to S⊥ is a
direction along which f⋆ is constant.

(b) If f is closed, we have

S ∩ ri
(

dom(f⋆)
)

6= Ø

if and only if every direction of recession of f that belongs to S⊥ is a
direction along which f is constant.

Solution: (a) Use Exercise 3.17 with C = dom(f), and with σC equal to the
recession function rf⋆ . Note that the support function of dom(f) is the recession
function of f⋆, according to one of the exercises for Chapter 1.

(b) If f is closed, then by the Conjugacy Theorem [Prop. 1.6.1(c)], it is the
conjugate of f⋆, and the result follows by applying part (a) with the roles of f
and f⋆ interchanged.

3.19 (Closedness of Image)

Let f : ℜn 7→ (−∞,∞] be a closed proper convex function, and let f⋆ be its
conjugate. Consider the image function

(A ◦ f)(x) = inf
Az=x

f(z), x ∈ ℜn,

where A is an m × n matrix. Note that the convexity of A ◦ f was established
in Exercise 3.12, and the calculation of its conjugate was given as (f⋆ ◦ A′)(y) =
f⋆(A′y) in Exercise 3.15. This exercise provides criteria for closedness of A ◦ f .

(a) If
R(A′) ∩ ri

(

dom(f⋆)
)

6= Ø,

then A◦f is closed and proper, and the infimum in its definition is attained
for all x ∈ dom(A ◦ f). Furthermore, A ◦ f is the conjugate of f⋆ ◦ A′.

(b) If f is polyhedral and

R(A′) ∩ dom(f⋆) 6= Ø,

then A ◦ f is polyhedral, and the infimum in its definition is attained for
all x ∈ dom(A ◦ f). Furthermore, A ◦ f is the conjugate of f⋆ ◦ A′.

Solution: To simplify notation, we denote g = A ◦ f .
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(a) By Exercise 3.18, every direction of recession of f that belongs to R(A′)⊥

[which is N(A)] is a direction along which f is constant. From Exercise 3.12(b), it
follows that g is closed and proper, and the infimum in its definition is attained
for all x ∈ dom(g). Furthermore, g is the conjugate of f⋆ ◦ A′ in view of the
closedness of g and Exercise 3.15.

(b) We view g as the result of partial minimization of a polyhedral function.
Therefore, using Prop. 3.3.1(b) and the fact that projection of a polyhedral set
is polyhedral, the epigraph of g is polyhedral. Furthermore, the assumption
R(A′)∩ dom(h) 6= Ø implies that there exists x ∈ ℜm such that f⋆(A′x) < ∞ or

sup
y∈ℜn

{

y′A′x − f(y)
}

< ∞.

It follows that

y′A′x ≤ f(y), ∀ y ∈ ℜn,

so using the definition of g, we have x′x ≤ g(x) for all x ∈ ℜm. Therefore,
−∞ < g(x) for all x ∈ ℜm, so that g is proper, and hence polyhedral by Prop.
3.3.5.

Finally, since minimizing f(z) over {z | Az = x} is a linear program whose
optimal value is finite for all x ∈ dom(g), by Prop. 1.4.12, it follows that the
infimum in the definition of g is attained for all x ∈ dom(g).

3.20 (Closedness of Infimal Convolution)

Let fi : ℜn 7→ (−∞,∞], i = 1, . . . , m, be closed proper convex functions, and let
f⋆

i be their corresponding conjugates. Consider the infimal convolution

(f1 ⊕ · · · ⊕ fm)(x) = inf
x1+···+xm=x

{

f1(x1) + · · · + fm(xm)
}

, x ∈ ℜn.

Note that the convexity of f1 ⊕ · · · ⊕ fm was established in Exercise 3.13, and
the calculation of its conjugate was given as f⋆

1 + · · ·+ f⋆
m in Exercise 3.16. This

exercise provides criteria for closedness of f1 ⊕ · · · ⊕ fm. Show that if for some
k, the functions f1, . . . , fk are polyhedral, the functions fk+1, . . . , fm are closed,
and

(

∩k
i=1 dom(f⋆

i )
)

∩
(

∩m
i=k+1 ri

(

dom(f⋆
i )

)

)

6= Ø, (3.20)

then f1⊕· · ·⊕fm is closed and proper, and the infimum in its definition is attained
for all x ∈ dom(f1 ⊕ · · · ⊕ fm). In this case, f1 ⊕ · · · ⊕ fm is the conjugate of
f⋆
1 + · · · + f⋆

m.

Solution: We first show the result in the two special cases where all the functions
fi are nonpolyhedral and polyhedral, respectively, and we then combine the two
cases to show the result in its full generality. To simplify notation, we denote

g = f1 ⊕ · · · ⊕ fm.
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We first assume that ∩m
i=1ri

(

dom(f⋆
i )

)

6= Ø, and we show that the result
follows from the corresponding result for the image operation (Exercise 3.19). In-
deed, the infimal convolution operation is the special case of the image operation
A ◦ f , where f and A are given by

f(x) = f1(x1) + · · · + fm(xm), A(x1, . . . , xm) = x1 + · · · + xm.

It is straightforward to verify that the condition ∩m
i=1ri

(

dom(f⋆
i )

)

6= Ø is equiv-
alent to

R(A′) ∩ ri
(

dom(f⋆)
)

6= Ø,

where f⋆ is the conjugate of f . Hence, by Exercise 3.19(a), g is closed and proper,
and the infimum in its definition is attained for all x ∈ dom(g).

A similar proof, using Exercise 3.19(b), shows the result under the assump-
tion that ∩m

i=1dom(f⋆
i ) 6= Ø and that all functions fi are polyhedral.

Finally, to show the result in the general case, we introduce the polyhedral
function

p(y) = f⋆
1 (y) + · · · + f⋆

k (y)

and the closed proper convex function

q(y) = f⋆
k+1(y) + · · · + f⋆

m(y).

The assumption (3.20) then amounts to dom(p)∩ri
(

dom(q)
)

6= Ø, since dom(p) =

∩k
i=1dom(f⋆

i ), and the condition ∩m
i=1ri

(

dom(f⋆
i )

)

6= Ø implies that

ri
(

dom(q)
)

= ∩m
i=k+1ri

(

dom(f⋆
i )

)

by Prop. 1.3.8.
Let M be the affine hull of dom(q) and assume for simplicity, and without

loss of generality, that M is a subspace. It can be seen that the condition dom(p)∩
ri
(

dom(q)
)

6= Ø is equivalent to

ri
(

dom(p) ∩ M
)

∩ ri
(

dom(q)
)

6= Ø

[see the exercises for Chapter 1; the proof is to choose y ∈ ri
(

dom(p) ∩ M
)

and

y ∈ dom(p)∩ri
(

dom(q)
)

[which belongs to dom(p)∩M ], consider the line segment
connecting y and y, and use the Line Segment Principle to conclude that points
close to y belong to dom(p) ∩ ri

(

dom(q)
)

]. Therefore, if we replace p with the
function p̂ given by

p̂(y) =
{

p(y) if y ∈ M ,
∞ otherwise,

whose domain is dom(p) ∩ M , the special case of the result shown earlier for
nonpolyhedral functions applies. We thus obtain that the function

ĝ(x) = inf
y∈ℜn

{

r(y) + s(x − y)
}

is closed and the infimum over y is attained for all x ∈ dom(ĝ), where r and s
are the conjugates of p̂ and q, respectively. It can be seen by a straightforward
calculation that ĝ = g and the result follows.
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3.21 (Preservation of Closedness Under Linear Transformation)

Let C, Ci, i = 1, . . . , m, be nonempty closed convex subsets of ℜn, and let D,
Di, i = 1, . . . , m, denote the domains of their support functions:

D = dom(σC), Di = dom(σCi), i = 1, . . . , m.

(a) Let A be an m × n matrix. Then AC is closed if R(A′) ∩ ri(D) 6= Ø.

(b) The vector sum C1 + · · · + Cm is closed if ∩m
i=1ri(Di) 6= Ø.

(c) The vector sum C1 + · · · + Cm is closed if for some k ≥ 1, C1, . . . , Ck is
polyhedral, and

(

∩k
i=1Di

)

∩
(

∩m
i=k+1ri(Di)

)

6= Ø.

Solution: (a) We apply Exercise 3.19(a) with f and f⋆ being the support and
indicator functions of C, respectively.

(b), (c) It is sufficient to consider the case of two sets (m = 2). We apply the
result of Exercise 3.20 with f1, f2 equal to the support functions of C1, C2, and
f⋆
1 , f⋆

2 equal to the indicator functions of C1, C2. Then the indicator function of
C1 +C2 is obtained as the infimal convolution of f⋆

1 , f⋆
2 . Under the given relative

interior assumptions, Exercise 3.20 shows that the infimal convolution function
is closed, so C1 + C2 is closed.

3.22 (Partial Minimization of Quasiconvex Functions)

Consider a function F : ℜn+m 7→ [−∞,∞] of vectors x ∈ ℜn and z ∈ ℜm, which
is quasiconvex (cf. Exercise 3.4). Show that the function f : ℜn 7→ [−∞,∞] given
by

f(x) = inf
z∈ℜm

F (x, z)

is quasiconvex. Hint : The level sets of f are obtained by projection of level sets of
F on ℜn as follows: for any γ ∈ ℜ and monotonically decreasing scalar sequence
{γk} with γk → γ,

{

x | f(x) ≤ γ
}

= ∩∞
k=1

{

x | there exists (x, z) with F (x, z) ≤ γk

}

.

Solution: We follow the hint. Since intersection and projection preserve convex-
ity,

{

x | f(x) ≤ γ
}

is convex for all γ ∈ ℜ, so f is quasiconvex.

SECTION 3.4: Saddle Point and Minimax Theory

3.23 (Saddle Points in Two Dimensions)

Consider a function φ of two real variables x and z taking values in compact
intervals X and Z, respectively. Assume that for each z ∈ Z, the function φ(·, z)
is minimized over X at a unique point denoted x̂(z). Similarly, assume that for
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each x ∈ X, the function φ(x, ·) is maximized over Z at a unique point denoted
ẑ(x). Assume further that the functions x̂(z) and ẑ(x) are continuous over Z and
X, respectively. Show that φ has a saddle point (x∗, z∗). Use this to investigate
the existence of saddle points of φ(x, z) = x2 + z2 over X = [0, 1] and Z = [0, 1].

Solution: We consider a function φ of two real variables x and z taking values
in compact intervals X and Z, respectively. We assume that for each z ∈ Z, the
function φ(·, z) is minimized over X at a unique point denoted x̂(z), and for each
x ∈ X, the function φ(x, ·) is maximized over Z at a unique point denoted ẑ(x),

x̂(z) = arg min
x∈X

φ(x, z), ẑ(x) = arg max
z∈Z

φ(x, z).

Consider the composite function f : X 7→ X given by

f(x) = x̂
(

ẑ(x)
)

,

which is a continuous function in view of the assumption that the functions x̂(z)
and ẑ(x) are continuous over Z and X, respectively. Assume that the compact
interval X is given by [a, b]. We now show that the function f has a fixed point,
i.e., there exists some x∗ ∈ [a, b] such that

f(x∗) = x∗.

Define the function g : X 7→ X by

g(x) = f(x) − x.

Assume that f(a) > a and f(b) < b, since otherwise [in view of the fact that f(a)
and f(b) lie in the range [a, b]], we must have f(a) = a and f(b) = b, and we are
done. We have

g(a) = f(a) − a > 0,

g(b) = f(b) − b < 0.

Since g is a continuous function, the preceding relations imply that there exists
some x∗ ∈ (a, b) such that g(x∗) = 0, i.e., f(x∗) = x∗. Hence, we have

x̂
(

ẑ(x∗)
)

= x∗.

Denoting ẑ(x∗) by z∗, we obtain

x∗ = x̂(z∗), z∗ = ẑ(x∗). (3.21)

By definition, a pair (x, z) is a saddle point if and only if

max
z∈Z

φ(x, z) = φ(x, z) = min
x∈X

φ(x, z),

or equivalently, if x = x̂(z) and z = ẑ(x). Therefore, from Eq. (3.21), we see that
(x∗, z∗) is a saddle point of φ.

We now consider the function φ(x, z) = x2 + z2 over X = [0, 1] and Z =
[0, 1]. For each z ∈ [0, 1], the function φ(·, z) is minimized over [0, 1] at a unique
point x̂(z) = 0, and for each x ∈ [0, 1], the function φ(x, ·) is maximized over
[0, 1] at a unique point ẑ(x) = 1. These two curves intersect at (x∗, z∗) = (0, 1),
which is the unique saddle point of φ.
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3.24 (Saddle Points for Quadratic Functions)

Consider a quadratic function φ : X × Z 7→ ℜ of the form

φ(x, z) = x′Qx + c′x + z′Mx − z′Rz − d′z,

where Q and R are symmetric positive semidefinite n × n and m × m matrices,
respectively, M is an n×m matrix, c ∈ ℜn, d ∈ ℜm, and X and Z are polyhedral
subsets of ℜn and ℜm, respectively. Show that if either supz∈Z inf

x∈X
φ(x, z) is

finite or inf
x∈X

supz∈Z φ(x, z) is finite, there exists a saddle point. Use the case
where φ(x, z) = x + z, X = Z = ℜ, to show that the finiteness assumption is
essential.

Solution: Here, the domain of the function

sup
z∈Z

Φ(x, z)

is polyhedral and the function is convex quadratic within its domain. The re-
sult follows from the existence of solutions result for quadratic programs (Prop.
1.4.12).
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