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2 Introduction Chap. 1
1.1 STRUCTURE OF DYNAMIC PROGRAMMING PROBLEMS

Dynamic programming (DP for short) is the principal method for analysis
of a large and diverse class of sequential decision problems. Examples are
deterministic and stochastic optimal control problems with a continuous
state space, Markov and semi-Markov decision problems with a discrete
state space, minimax problems, and sequential zero sum games. While the
nature of these problems may vary widely, their underlying structures turn
out to be very similar. In all cases there is an underlying mapping that de-
pends on an associated controlled dynamic system and corresponding cost
per stage. This mapping, the DP operator, provides a “compact signature”
of the problem. It defines the cost function of policies and the optimal cost
function, and it provides a convenient shorthand notation for algorithmic
description and analysis.

More importantly, the structure of the DP operator defines the math-
ematical character of the associated problem. The purpose of this book is to
provide an analysis of this structure, centering on two fundamental prop-
erties: monotonicity and (weighted sup-norm) contraction. It turns out
that the nature of the analytical and algorithmic DP theory is determined
primarily by the presence or absence of these two properties, and the rest
of the problem’s structure is largely inconsequential.

A Deterministic Optimal Control Example

To illustrate our viewpoint, let us consider a discrete-time deterministic
optimal control problem described by a system equation

Th41 :f($k,uk), k:(),l,.... (1.1)

Here zy, is the state of the system taking values in a set X (the state space),
and uy is the control taking values in a set U (the control space). At stage
k, there is a cost

akg(xy, ug)

incurred when uy is applied at state xy, where « is a scalar in (0, 1] that has
the interpretation of a discount factor when o < 1. The controls are chosen
as a function of the current state, subject to a constraint that depends on
that state. In particular, at state x the control is constrained to take values
in a given set U(z) C U. Thus we are interested in optimization over the
set of (nonstationary) policies

= {{M07M17}|Mk EMv k:())lv"'}v
where M is the set of functions u : X — U defined by

M={p|puz)eUz),VzeX}
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The total cost of a policy m = {uo, g1, .. .} over an infinite number of
stages and starting at an initial state xg is

o0

Jr(x0) = Zakg(xmﬂk(xk))a (1.2)

k=0

where the state sequence {z} is generated by the deterministic system
(1.1) under the policy =

Tl+41 :f(xk,uk(xk)), k:O,l,...
The optimal cost function is {

J (x) = ;Ielfn JIr(x), rzeX.

For any policy m = {uo, pt1, . . .}, consider the policy m1 = {1, 2, ...}
and write by using Eq. (1.2),

Jr(x) = g(, po(x)) + oy (f (2, po(2)).
We have for all x € X

J" ()

r—{ig,m1 €Il {9(@.10(@)) + ey (f(, mo(@)) }

= ol {g(e.o(@)) +a inf oy (F(.po(e)) }

= inf { x, po(x)) + o (f(z, polx }
Jnt {o( (@) + " (Flo (@)
The minimization over o € M can be written as minimization over all
u € U(x), so we can write the preceding equation as

J*(x):ueigfw) {g(z,u)JraJ*(f(x,u))}, VaoeX. (1.3)

This equation is an example of Bellman’s equation, which plays a
central role in DP analysis and algorithms. If it can be solved for J*,
an optimal stationary policy {u*,u*,...} may typically be obtained by
minimization of the right-hand side for each z, i.e.,

p*(z) eargugg&) {g(m,u)—l—aJ*(f(%u))}, VzrelX. (1.4)

1 For the informal discussion of this section, we will disregard a few mathe-
matical issues. In particular, we assume that the series defining J- in Eq. (1.2)
is convergent for all allowable 7, and that the optimal cost function J* is real-
valued. We will address such issues later.
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We now note that both Egs. (1.3) and (1.4) can be stated in terms of
the expression

H(z,u,J) = g(z,u) + ot (f(z,u)), re X, ueU(x).
Defining
(TpJ)(z) = H(z, u(x), J), reX,

and

T = inf H = inf (T, X
( J)(.I‘) uelg(z) (J?,U,J) ;Llél./\/l( #'])(I)7 T E )

we see that Bellman’s equation (1.3) can be written compactly as
J=TJ",

i.e., J* is the fixed point of T, viewed as a mapping from the set of real-
valued functions on X into itself. Moreover, it can be similarly seen that
Ju, the cost function of the stationary policy {u, i, ...}, is a fixed point of
T,. In addition, the optimality condition (1.4) can be stated compactly as

Ty J* = T.J".

We will see later that additional properties, as well as a variety of algorithms
for finding J* can be analyzed using the mappings T and T},.
One more property that holds in some generality is worth noting. For
a given policy m = {po, f41, ...} and a terminal cost aVJ(xy) for the state
xn at the end of N stages, consider the N-stage cost function
N-1
Jre n(xo) = aNJ(xN) + Z ok g (@, pe(zr)). (1.5)
k=0
Then it can be verified by induction that for all initial states xg, we have

Jrn(20) = (Tuo Ty -+ Tup_y J)(20)- (1.6)

Here T}, T}, -+ Thup_, is the composition of the mappings Tyq, Ty s - Ty s
i.e., for all J,

(T Ty J)(x) = (THO(Tﬂ«lJ))(x)v z e X,
and more generally

(Tuon o 'TuN—1J)(93) = (Tuo (Tpy (- (TI—LN—IJ))))(J;)? z € X,
(our notational conventions are summarized in Appendix A). Thus the
finite horizon cost functions Jr y of 7 can be defined in terms of the map-
pings T}, [cf. Eq. (1.6)], and so can their infinite horizon limit Jy:

Jr(x) = A}im (Tuo Ty - Ty ) (), re X, (1.7)
where J is the zero function, J(z) = 0 for all z € X (assuming the limit
exists).
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Connection with Fixed Point Methodology

The Bellman equation (1.3) and the optimality condition (1.4), stated in
terms of the mappings 7}, and 7', highlight the central theme of this book,
which is that DP theory is intimately connected with the theory of abstract
mappings and their fixed points. Analogs of the Bellman equation, J* =
TJ*, optimality conditions, and other results and computational methods
hold for a great variety of DP models, and can be stated compactly as
described above in terms of the corresponding mappings 7;, and 7. The
gain from this abstraction is greater generality and mathematical insight,
as well as a more unified, economical, and streamlined analysis.

ABSTRACT DYNAMIC PROGRAMMING MODELS

In this section we formally introduce and illustrate with examples an ab-
stract DP model, which embodies the ideas discussed in the preceding
section.

1.2.1 Problem Formulation

Let X and U be two sets, which we loosely refer to as a set of “states”
and a set of “controls,” respectively. For each z € X let U(z) C U be a
nonempty subset of controls that are feasible at state x. We denote by M
the set of all functions p : X +— U with p(x) € U(z), for all z € X.

In analogy with DP, we refer to sequences m = {uo, ti1,...}, with
wr € M for all k, as “nonstationary policies,” and we refer to a sequence
{p, ,...}, with p € M, as a “stationary policy.” In our development,
stationary policies will play a dominant role, and with slight abuse of ter-
minology, we will also refer to any p € M as a “policy” when confusion
cannot arise.

Let R(X) be the set of real-valued functions J : X — R, and let
H: X xUx R(X) +— R be a given mapping. { For each policy u € M, we
consider the mapping T}, : R(X) — R(X) defined by

(TpJ)(z) = H(z, u(x), J), VazeX,JeR(X),
and we also consider the mapping T defined by I
(TT)(z) = 12{ )H(:mu,]), VaeeX,JeRX).
uelU(x

1 Our notation and mathematical conventions are outlined in Appendix A.
In particular, we denote by 3 the set of real numbers, and by R" the space of
n-dimensional vectors with real components.

I We assume that H, T, J, and TJ are real-valued for J € R(X) in the
present chapter and in Chapter 2. In Chapters 3-5 we will allow H(z,u,J), and
hence also (T,,J)(z) and (T'J)(z), to take the values co and —oo.
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Similar to the deterministic optimal control problem of the preceding
section, the mappings T}, and T serve to define a multistage optimization
problem and a DP-like methodology for its solution. In particular, for some
function J € R(X), and nonstationary policy m = {0, 11, ...}, we define
for each integer N > 1 the functions

Ja N (@) = (Tyo Ty '”Tl‘Nfl‘])(x% r e X,

where T}, Ty, -+ Ty, denotes the composition of the mappings T}, Ty,
T ie.,

ceey dpun_qs

Tuo Ty - Tr—y T = (Tuo Ty - (T s Ty, J))) -+-)), J € R(X).

We view Jr n as the “N-stage cost function” of 7 [cf. Eq. (1.5)]. Consider
also the function

Jx(z) = limsup Jr n(z) = imsup(Tyo Ty, - Tup_y ) (), reX,

N—o0 N—o0

which we view as the “infinite horizon cost function” of 7 [cf. Eq. (1.7); we
use limsup for generality, since we are not assured that the limit exists].
We want to minimize J over 7, i.e., to find

J*(z) = inf Jx(x), zeX,

and a policy 7* that attains the infimum, if one exists.
The key connection with fixed point methodology is that J* “typi-
cally” (under mild assumptions) can be shown to satisfy

J(z) = inf H(z,u,J"), VaeX,
ueU(x)

i.e., it is a fixed point of T. We refer to this as Bellman’s equation [cf. Eq.
(1.3)]. Another fact is that if an optimal policy 7* exists, it “typically” can
be selected to be stationary, 7* = {u*, pu*, ...}, with u* € M satisfying an
optimality condition, such as for example

Ty " =TJ*

[cf. Eq. (1.4)]. Several other results of an analytical or algorithmic nature
also hold under appropriate conditions, which will be discussed in detail
later.

However, Bellman’s equation and other related results may not hold
without 7}, and 7" having some special structural properties. Prominent
among these are a monotonicity assumption that typically holds in DP
problems, and a contraction assumption that holds for some important
classes of problems.
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1.2.2 Monotonicity and Contraction Assumptions

Let us now formalize the monotonicity and contraction assumptions. We
will require that both of these assumptions hold throughout the next chap-
ter, and we will gradually relax the contraction assumption in Chapters
3-5. Recall also our assumption that 7, and T map R(X) (the space of
real-valued functions over X)) into R(X). In Chapters 3-5 we will relax this
assumption as well.

Assumption 1.2.1: (Monotonicity) If J,J' € R(X) and J < J/,
then
H(z,u,J) < H(z,u,J), VeelX, uelU(x).

Note that by taking infimum over u € U(z), we have

J<J = inf H(z,u,J) < inf H(z,u,J), VzelX,
ueU(x) ueU(x)

or equivalently,
J<J = TJ<TJ.

Another way to arrive at this relation, is to note that the monotonicity
assumption is equivalent to

J<J = T,J<T,J, VpeM,
and to use the simple but important fact

inf H = inf (T, X
uelg(@ (z,u, J) MlélM( wd) (), VaeeX,JeR(z),

i.e., infimum over u is equivalent to infimum over u, which holds in view
of the definition M = {y | p(z) € U(z), V # € X }. We will be writing this
relation as T'J = inf,, e pm T} J.
For the contraction assumption, we introduce a function v : X — R
with
v(z) >0, VaoelX.

Let us denote by B(X) the space of real-valued functions J on X such
that J(z)/v(z) is bounded as z ranges over X, and consider the weighted
sup-norm
J ()
11 = sup L0
z€X U(x)
on B(X). The properties of B(X) and some of the associated fixed point
theory are discussed in Appendix B. In particular, as shown there, B(X)
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Figure 1.2.1. Illustration of the monotonicity and the contraction assumptions in
one dimension. The mapping 7}, on the left is monotone but is not a contraction.
The mapping T}, on the right is both monotone and a contraction. It has a unique
fixed point at J,.

is a complete normed space, so any mapping from B(X) to B(X) that is a
contraction or an m-stage contraction for some integer m > 1, with respect
to || - ||, has a unique fixed point (cf. Props. B.1 and B.2).

Assumption 1.2.2: (Contraction) For all J € B(X) and p € M,
the functions T,J and T'J belong to B(X). Furthermore, for some
a € (0,1), we have

IT.J =T, 0| <allJ—J|, VJ,J eBX), peM. (L8)

Figure 1.2.1 illustrates the monotonicity and the contraction assump-
tions. It is important to note that the contraction condition (1.8) implies
that

\TJ-TJ| <ol -, v J,J € B(X), (1.9)

so that T is also a contraction with modulus a. To see this we use Eq.
(1.8) to write

(Tud) () < (TpJ") (@) + allJ] = J'v(z), VzelX,
from which, by taking infimum of both sides over u € M, we have
(TJ)(x) — (T)(x)
v(x)
Reversing the roles of J and J’, we also have
(TJ)(z) — (TJ)(x)
v(z)

<ao|J-J|, VazeX.

<allJ-=J, VaoelX,
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and combining the preceding two relations, and taking the supremum of
the left side over z € X, we obtain Eq. (1.9).

Nearly all mappings related to DP satisfy the monotonicity assump-
tion, and many important ones satisfy the weighted sup-norm contraction
assumption as well. When both assumptions hold, the most powerful an-
alytical and computational results can be obtained, as we will show in
Chapter 2. These are:

(a) Bellman’s equation has a unique solution, i.e., T" and 7T}, have unique
fixed points, which are the optimal cost function J* and the cost
functions J, of the stationary policies {y, u, . ..}, respectively [cf. Eq.

(1.3)].

(b) A stationary policy {u*, p*,...} is optimal if and only if
TyJ*=TJ",
[cf. Eq. (1.4)].

(¢) J* and J, can be computed by the value iteration method,

J* = lim TkJ, Ju = klim T J,

k—oo
starting with any J € B(X).

(d) J* can be computed by the policy iteration method, whereby we gen-
erate a sequence of stationary policies via

Loprrd e =Tk,

starting from some initial policy u0 [here J .k 1s obtained as the fixed

point of T, x by several possible methods, including value iteration as

in (c) above].

These are the most favorable types of results one can hope for in the
DP context, and they are supplemented by a host of other results, involving
approximate and/or asynchronous implementations of the value and policy
iteration methods, and other related methods that combine features of
both. As the contraction property is relaxed and is replaced by various
weaker assumptions, some of the preceding results may hold in weaker
form. For example J* turns out to be a solution of Bellman’s equation in
all the models to be discussed, but it may not be the unique solution. The
interplay between the monotonicity and contraction-like properties, and
the associated results of the form (a)-(d) described above is the recurring
analytical theme in this book.

1.2.3 Some Examples

In what follows in this section, we describe a few special cases, which indi-
cate the connections of appropriate forms of the mapping H with the most
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popular total cost DP models. In all these models the monotonicity As-
sumption 1.2.1 (or some closely related version) holds, but the contraction
Assumption 1.2.2 may not hold, as we will indicate later. Our descriptions
are by necessity brief, and the reader is referred to the relevant textbook
literature for more detailed discussion.

Example 1.2.1 (Stochastic Optimal Control - Markovian
Decision Problems)

Consider the stationary discrete-time dynamic system
Tk+1 zf(a:k,uk,ka k:071,..‘7 (110)

where for all k, the state xj is an element of a space X, the control uy is
an element of a space U, and wy, is a random “disturbance,” an element of
a space W. We consider problems with infinite state and control spaces, as
well as problems with discrete (finite or countable) state space (in which case
the underlying system is a Markov chain). However, for technical reasons
that relate to measure theoretic issues to be explained later in Chapter 5, we
assume that W is a countable set.

The control u is constrained to take values in a given nonempty subset
U(zk) of U, which depends on the current state xp [ur € U(zy), for all
zr € X]. The random disturbances wi, k = 0,1,..., are characterized by
probability distributions P(- | z, ux) that are identical for all k, where P(wy, |
Zk,ur) is the probability of occurrence of wy, when the current state and
control are xj, and wug, respectively. Thus the probability of w, may depend
explicitly on xx and wug, but not on values of prior disturbances wg—_1, ..., wo.

Given an initial state zo, we want to find a policy m = {po, p1, ...},
where pr : X — U, pr(zx) € U(zk), for all zx € X, k = 0,1,..., that
minimizes the cost function

N-—-1
JW(ZEO) :limsup E]; Zakg(l‘k,ﬂk(wk),l,l)k) ) (111)
N —oo w
k=0,1,... k=0

subject to the system equation constraint
Thk+1 :f(xkz.uk(xk):wk)a k20717

This is a classical problem, which is discussed extensively in various sources,

including the author’s text [Ber12a]. It is usually referred to as the stochastic

optimal control problem or the Markovian Decision Problem (MDP for short).
Note that the expected value of the N-stage cost of 7,

N—-1
wE’ Zakg(mkvﬂk(mk)7wk) )
k=0,1,... \ k=0

is defined as a (possibly countably infinite) sum, since the disturbances wg,
k = 0,1,..., take values in a countable set. Indeed, the reader may verify



Sec. 1.2 Abstract Dynamic Programming Models 11

that all the subsequent mathematical expressions that involve an expected
value can be written as summations over a finite or a countable set, so they
make sense without resort to measure-theoretic integration concepts. }

In what follows we will often impose appropriate assumptions on the
cost per stage g and the scalar «, which guarantee that the infinite horizon
cost Jx(zo) is defined as a limit (rather than as a limsup):

N-—-1
oo = Jim {Za‘“gwk,ukww,wo}-

k=0,1,... (k=0

In particular, it can be shown that the limit exists if & < 1 and g is uniformly
bounded, i.e., for some B > 0,

}g(x,u,w)‘ < B, Vee X, ueU(x),weW. (1.12)

In this case, we obtain the classical discounted infinite horizon DP prob-
lem, which generally has the most favorable structure of all infinite horizon
stochastic DP models (see [Ber12a], Chapters 1 and 2).

To make the connection with abstract DP, let us define

H(z,u,J) = E{g(x,u,w) + aJ(f(x,u,w))},
so that

(Tud) (@) = B{g(z, u(z),w) + aJ (f(z, p(z),w)) },

and

TJ)(z)= inf Eqg(z,u,w)+ aJ(f(x,u,w));.

@N@) = inf B{ga.uw) + o (f@.uw)}
Similar to the deterministic optimal control problem of Section 1.1, the N-
stages cost of 7, can be expressed in terms of T},:

W
k=0,1,... \ k=0

N-1
(Tug -+ Tuy_1J) (o) = E {Zakg(mk,,uk(mk),wk)}7

1 As noted in Appendix A, the formula for the expected value of a random

variable w defined over a space ) is

B{w} = B{w"} + E{w"},

where wT and w™ are the positive and negative parts of w,

w(w) = max {O,M(UJ)}, w~ (w) = min {O,w(w)}7 VweQ.

In this way, taking also into account the rule co—oo = oo (see Appendix A), E{w}
is well-defined as an extended real number if 2 is finite or countably infinite.
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where J is the zero function, J(z) = 0 for all z € X. The same is true for
the infinite stages cost [cf. Eq. (1.11)]:

Jr(x0) = limsup (Tyg -+ Tpp_ 1 J)(@0).
N—oo

It can be seen that the mappings 7}, and 7" are monotone, and it is
well-known that if @ < 1 and the boundedness condition (1.12) holds, they
are contractive as well (under the unweighted sup-norm); see e.g., [Ber12a],
Chapter 1. In this case, the model has the powerful analytical and algorith-
mic properties (a)-(d) mentioned at the end of the preceding subsection. In
particular, the optimal cost function J* [i.e., J*(z) = inf, Jx(z) for all z € X]
can be shown to be the unique solution of the fixed point equation J* = T'J",
also known as Bellman’s equation, which has the form

J(x) = Eilr}f(")E{g(m,u,w)+aJ*(f(1:,u,w))}, z € X,

and parallels the one given for deterministic optimal control problems [cf. Eq.
(1.3)].

These properties can be expressed and analyzed in an abstract setting
by using just the mappings 7}, and 7', both when T}, and T are contractive
(see Chapter 2), and when they are only monotone and not contractive (see
Chapter 4). Moreover, under some conditions, it is possible to analyze these
properties in cases where T, is contractive for some but not all p (see Chapter
3, and Sections 4.4-4.5).

Example 1.2.2 (Finite-State Discounted Markovian Decision
Problems)

In the special case of the preceding example where the number of states is
finite, the system equation (1.10) may be defined in terms of the transition
probabilities

pxy(u)zProb(yzf(x,u,w) |9L’)7 z,y € X, u € U(x),
so H takes the form
H(z,u, ) =Y pay(u)(9(@,u,y) + J(y)).
yeX

When o < 1 and the boundedness condition
l9(z,u,9)| < B, Va,yeX uecU(x),

[cf. Eq. (1.12)] holds (or more simply when U is a finite set), the mappings 7},
and T are contraction mappings with respect to the standard (unweighted)
sup-norm. This is a classical problem, referred to as discounted finite-state
MDP, which has a favorable theory and has found extensive applications (cf.
[Ber12a], Chapters 1 and 2). The model is additionally important, because it
is often used for computational solution of continuous state space problems
via discretization.
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Example 1.2.3 (Discounted Semi-Markov Problems)

With z, y, and u as in Example 1.2.2, consider a mapping of the form

H(z,u,J) = G(z,u) + Z My (u)J (y),

yeX

where G is some function representing expected cost per stage, and mgy (u)
are nonnegative scalars with

Zmzy(u)<1, VoeeX,ueU(z).

yeX

The equation J* = T'J* is Bellman’s equation for a finite-state continuous-
time semi-Markov decision problem, after it is converted into an equivalent
discrete-time problem (cf. [Ber12a], Section 1.4). Again, the mappings T}, and
T are monotone and can be shown to be contraction mappings with respect
to the unweighted sup-norm.

Example 1.2.4 (Discounted Zero-Sum Dynamic Games)

Let us consider a zero sum game analog of the finite-state MDP Example 1.2.2.
Here there are two players that choose actions at each stage: the first (called
the minimizer) may choose a move ¢ out of n moves and the second (called
the mazimizer) may choose a move j out of m moves. Then the minimizer
gives a specified amount a;; to the maximizer, called a payoff. The minimizer
wishes to minimize a;;, and the maximizer wishes to maximize a;;.

The players use mixed strategies, whereby the minimizer selects a prob-
ability distribution u = (u1,...,u,) over his n possible moves and the max-
imizer selects a probability distribution v = (v1,...,vm) over his m possible
moves. Since the probability of selecting ¢ and j is w;v;, the expected pay-
off for this stage is Z” @;jU;Vj Or u' Av, where A is the n x m matrix with
components a;;.

In a single-stage version of the game, the minimizer must minimize
maxy,ecv v’ Av and the maximizer must maximize min,cy v’ Av, where U and
V are the sets of probability distributions over {1,...,n} and {1,...,m},
respectively. A fundamental result (which will not be proved here) is that
these two values are equal:

. A . /
min max v Av = maxminu’ Av. (1.13)
uwelU veV veV uelU

Let us consider the situation where a separate game of the type just
described is played at each stage. The game played at a given stage is repre-
sented by a “state” x that takes values in a finite set X. The state evolves
according to transition probabilities gzy(7,j) where ¢ and j are the moves
selected by the minimizer and the maximizer, respectively (here y represents
the next game to be played after moves 7 and j are chosen at the game rep-
resented by x). When the state is , under v € U and v € V, the one-stage
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expected payoff is u’ A(z)v, where A(z) is the n x m payoff matrix, and the
state transition probabilities are

Pey(,0) = Y " wivdey (i, §) = u'Qayv,

i=1 j=1

where Qy is the n X m matrix that has components ¢qy(3,7). Payoffs are
discounted by « € (0, 1), and the objectives of the minimizer and maximizer,
roughly speaking, are to minimize and to maximize the total discounted ex-
pected payoff. This requires selections of u and v to strike a balance between
obtaining favorable current stage payoffs and playing favorable games in fu-
ture stages.

We now introduce an abstract DP framework related to the sequential
move selection process just described. We consider the mapping G given by

G(z,u,v,J) = v A(z)v + a Z Day(u,v)J (y)

yeX

(1.14)
=/ (A(m) +ay szJ(y)> v,

yeX
where « € (0,1) is discount factor, and the mapping H given by

H(z,u,J) =maxG(x,u,v,J).

veV

The corresponding mappings 7}, and T' are

(Tu])(@) = max G (z, p(z),v,J),  w€X,

and
(TJ)(xz) = min max G(z, u,v, J).

uelU veV

It can be shown that 7, and T are monotone and (unweighted) sup-norm
contractions. Moreover, the unique fixed point J* of T satisfies

J*(z) = min max G(z, u,v, J*), VareX,
uelU veV

(see [Berl2a], Section 1.6.2).
‘We now note that since

A@) + 0 QuyJ(y)

yeX

[cf. Eq. (1.14)] is a matrix that is independent of w and v, we may view J*(x)
as the value of a static game (which depends on the state x). In particular,
from the fundamental minimax equality (1.13), we have

min max G(z, u, v, J*) = max min G(x,u,v, J"), VaoelX.
uwelU veV veV uwelU
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This implies that J* is also the unique fixed point of the mapping

(TJ)(x) = Igleaacﬁ(x, v, J),

where

H(z,v,J) = min G(z,u,v,J),
uelU
i.e.,, J* is the fixed point regardless of the order in which minimizer and
maximizer select mixed strategies at each stage.

In the preceding development, we have introduced J* as the unique
fixed point of the mappings T and T. However, J* also has an interpretation
in game theoretic terms. In particular, it can be shown that J*(z) is the value
of a dynamic game, whereby at state x the two opponents choose multistage
(possibly nonstationary) policies that consist of functions of the current state,
and continue to select moves using these policies over an infinite horizon. For
further discussion of this interpretation, we refer to [Ber12a] and to books on
dynamic games such as [FiV96]; see also [PaB99] and [Yull] for an analysis
of the undiscounted case (o« = 1) where there is a termination state, as in the
stochastic shortest path problems of the subsequent Example 1.2.6.

Example 1.2.5 (Minimax Problems)

Consider a minimax version of Example 1.2.1, where w is not random but is
rather chosen by an antagonistic player from a set W (z,u). Let

H(I7uaj): E‘S;/J-(p )[g(au,w)—l—a](f(%u,w))}.

Then the equation J* = T'J* is Bellman’s equation for an infinite horizon
minimax DP problem. A special case of this mapping arises in zero-sum
dynamic games (cf. Example 1.2.4).

Example 1.2.6 (Stochastic Shortest Path Problems)

The stochastic shortest path (SSP for short) problem is the special case of
the stochastic optimal control Example 1.2.1 where:

(a) There is no discounting (a = 1).

(b) The state space is X = {0,1,...,n} and we are given transition prob-
abilities, denoted by

Pay(u) = Plarri =y |ze =z, ue =u), z,y€X, ueU(z).

(¢) The control constraint set U(x) is finite for all z € X.

(d) A cost g(z,u) is incurred when control u € U(z) is selected at state x.
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(e) State 0 is a special termination state, which is absorbing and cost-free,
ie.,
poo(u) =1,

and for all w € U(0), g(0,u) = 0.

To simplify the notation, we have assumed that the cost per stage does not
depend on the successor state, which amounts to using expected cost per
stage in all calculations.

Since the termination state 0 is cost-free and absorbing, the cost starting
from 0 is zero for every policy. Accordingly, for all cost functions, we ignore
the component that corresponds to 0, and define

H(z,u,J) = g(z,u) + pry(u)J(y), z=1,...,n, ue U(x), JeR".

y=1

The mappings T}, and T are defined by

(L) (@) = g(2,n@) + 3 pey (@) I, @ =1,....m,

(TI)(@) = min |g(@,w)+ Y poy(I@)|, o=1...n
y=1
Note that the matrix that has components p.y(u), z,y = 1,...,n, is sub-

stochastic (some of its row sums may be less than 1) because there may be
positive transition probability from a state = to the termination state 0. Con-
sequently 7, may be a contraction for some g, but not necessarily for all
nwe M.

The SSP problem has been discussed in many sources, including the
books [Pal67], [Der70], [Whi82], [Ber87], [BeT89], [HeL99], and [Berl2a],
where it is sometimes referred to by earlier names such as “first passage
problem” and “transient programming problem.” In the framework that is
most relevant to our purposes, there is a classification of stationary policies
for SSP into proper and improper. We say that u € M is proper if, when
using pu, there is positive probability that termination will be reached after at
most n stages, regardless of the initial state; i.e., if

pu = max P{z, #0|zo =2,p} < 1.

Otherwise, we say that p is improper. It can be seen that u is proper if and
only if in the Markov chain corresponding to u, each state x is connected to
the termination state with a path of positive probability transitions.

For a proper policy p, it can be shown that 7}, is a weighted sup-norm
contraction, as well as an n-stage contraction with respect to the unweighted
sup-norm. For an improper policy p, T, is not a contraction with respect to
any norm. Moreover, T also need not be a contraction with respect to any
norm (think of the case where there is only one policy, which is improper).
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However, T is a weighted sup-norm contraction in the important special case
where all policies are proper (see [BeT96], Prop. 2.2, or [Ber12a], Prop. 3.3.1).

Nonetheless, even in the case where there are improper policies and T’
is not a contraction, results comparable to the case of discounted finite-state
MDP are available for SSP problems assuming that:

(a) There exists at least one proper policy.

(b) For every improper policy there is an initial state that has infinite cost
under this policy.

Under the preceding two assumptions, it was shown in [BeT91] that T has a
unique fixed point J*, the optimal cost function of the SSP problem. More-
over, a policy {u*, 1%, ...} is optimal if and only if
TyxJ" =TJ".
In addition, J* and J, can be computed by value iteration,
Jr = Jim T"J, Ju = lim T,

starting with any J € R" (see [Ber12a], Chapter 3, for a textbook account).
These properties are in analogy with the desirable properties (a)-(c), given at
the end of the preceding subsection in connection with contractive models.

Regarding policy iteration, it works in its strongest form when there are
no improper policies, in which case the mappings 7}, and 1" are weighted sup-
norm contractions. When there are improper policies, modifications to the
policy iteration method are needed; see [YuB11al, [Ber12a], and also Sections
3.3.2, 3.3.3, where these modifications will be discussed in an abstract setting.

Let us also note that there is an alternative line of analysis of SSP
problems, whereby favorable results are obtained assuming that there exists
an optimal proper policy, and the one-stage cost is nonnegative, g(x,u) > 0
for all (z,u) (see [Pal67], [Der70], [Whi82], and [Ber87]). This analysis will
also be generalized in Chapter 3 and in Section 4.4, and the nonnegativity
assumption on g will be relaxed.

Example 1.2.7 (Deterministic Shortest Path Problems)

The special case of the SSP problem where the state transitions are determin-
istic is the classical shortest path problem. Here, we have a graph of n nodes
x =1,...,n, plus a destination 0, and an arc length a,, for each directed arc
(z,y). At state/node z, a policy p chooses an outgoing arc from z. Thus the
controls available at = can be identified with the outgoing neighbors of x [the
nodes w such that (z,u) is an arc]. The corresponding mapping H is

azu + J(u) ifu##0,
az0 if u =0,

H(x,u,J) :{

r=1,...,n.

A stationary policy p defines a graph whose arcs are (m, u(x)) , T =
1,...,n. The policy p is proper if and only if this graph is acyclic (it consists of
a tree of directed paths leading from each node to the destination). Thus there
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exists a proper policy if and only if each node is connected to the destination
with a directed path. Furthermore, an improper policy has finite cost starting
from every initial state if and only if all the cycles of the corresponding graph
have nonnegative cycle cost. It follows that the favorable analytical and
algorithmic results described for SSP in the preceding example hold if the
given graph is connected and the costs of all its cycles are positive. We will
see later that significant complications result if the cycle costs are allowed to
be nonpositive, even though the shortest path problem is still well posed in
the sense that shortest paths exist if the given graph is connected (see Section
3.1.2).

Example 1.2.8 (Multiplicative and Risk-Sensitive Models)

With z, y, u, and transition probabilities psy(u), as in the finite-state MDP
of Example 1.2.2, consider the mapping

H(x,u, J) = pry(u)g(x,uv y)J(y) = E{g(m,u,y)J(y) | 'Tvu}v (1'15)

yeX

where ¢ is a scalar function with g(z,u,y) > 0 for all z, y, u (this is necessary
for H to be monotone). This mapping corresponds to the multiplicative model
of minimizing over all m = {uo, 41, ...} the cost

I (wo) = limSUPE{g(m,Mo($0)7ml)g(ml,ﬂl(wl),wz)
N=eo (1.16)

g(mela,U/N—l(mel)JfN) |:po},

where the state sequence {zo,z1,...} is generated using the transition prob-
abilities pay o) 4 (,uk (xk))

To see that the mapping H of Eq. (1.15) corresponds to the cost function
(1.16), let us consider the unit function

and verify that for all o € X, we have

(Tho Ty -+ Tupy 1 J)(20) = E{g(wo,MO(iKO),wl)g(xbm(ml),wz) e
(1.17)

g(wN—lyﬂNfl(l'N—l),l’N) | mg},
so that

Jr(z) = limsup (T Ty, -+ Tup 4 J)(@), ze X.

N—oo
Indeed, taking into account that J(z) = 1, we have

(Tup_1 D) (@n—1) = E{g(mela/J/N—l(mN—l),xN)j(fN) | xN,l}
= E{g(zn—1,unv-1(zn-1),2n) |21 ),
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(TuN72TMN,1j)(mN—2) = <(THN—2 (TF‘Nflj))(xN_Q)
= E{g(.TN—2,MN—Q(«TN—2),33N—1)
~E{g(mN71,,uN71(0€N71),$N) |zn-1} | fENf?}a

and continuing similarly,

(Tao Ty - Ty ) (o) = E{9($07M0($0):fl)E{g(ﬂfl,Ml(fﬂl)yb)

E{Q(IN717MN71(IN71)7IN) | ‘TNfl} | mN72} - } | 290},

which by using the iterated expectations formula (see e.g., [BeT08]) proves
the expression (1.17).
An important special case of a multiplicative model is when g has the
form
g(aj7 u? y) = eh(l"u’y>
for some one-stage cost function h. We then obtain a finite-state MDP with
an exponential cost function,

Jr(z0) = limsup E

N —oo

)

{e(h(m()7H0(x0)»$1)+'”+h(xN71’“Nfl(fol)’l'N)) }

which is often used to introduce risk aversion in the choice of policy through
the convexity of the exponential.

There is also a multiplicative version of the infinite state space stochas-
tic optimal control problem of Example 1.2.1. The mapping H takes the
form

H(z,u,J) = E{g(m,u,w)](f(m,u, w))},

where xxy1 = f(xk, uk, ws) is the underlying discrete-time dynamic system;
cf. Eq. (1.10).

Multiplicative models and related risk-sensitive models are discussed
extensively in the literature, mostly for the exponential cost case and under
different assumptions than ours; see e.g., [HoM72], [Jac73], [Rot84], [ChS87],
[Whi90], [JBE94], [FIM95], [HeM96], [FeM97], [BoM99], [CoM99], [BoM99],
[BoMO02], [BBB08]. The works of references [DeR79], [Pat01], and [Pat07]
relate to the stochastic shortest path problems of Example 1.2.6, and are the
closest to the semicontractive models discussed in Chapters 3 and 4.

Issues of risk-sensitivity have also been dealt within frameworks that
do not quite conform to the multiplicative model of the preceding example,
and are based on the theory of multi-stage risk measures; see e.g., [Rusl0],
[CaR12], and the references quoted there. Still these formulations involve
abstract monotone DP mappings and are covered by our theory.

Example 1.2.9 (Distributed Aggregation)

The abstract DP framework is useful not only in modeling DP problems, but
also in modeling algorithms arising in DP and even other contexts. We il-
lustrate this with an example from [BeY10b] that relates to the distributed
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solution of large-scale discounted finite-state MDP using cost function ap-
proximation based on aggregation.{ It involves a partition of the n states
into m subsets for the purposes of distributed computation, and yields a cor-
responding approximation (Vi,...,V,,) to the cost vector J*.

In particular, we have a discounted n-state MDP (cf. Example 1.2.2),
and we introduce aggregate states Si,..., Sm, which are disjoint subsets of
the original state space {1,...,n}. We assume that these sets form a parti-
tion, i.e., each € {1,...,n} belongs to one and only one of the aggregate
state/subsets. We envision a network of processors £ = 1,...,m, each as-
signed to the computation of a local cost function V¢, defined on the corre-
sponding aggregate state/subset Sg:

Ve={Vey |y € Se}.

Processor ¢ also maintains a scalar aggregate cost Ry for its aggregate state,
which is a weighted average of the detailed cost values Vi, within Sy:

Ry = Z Aoz Ve,

z€Sy

where dy, are given probabilities with d¢, > 0 and Zm es, dez = 1. The aggre-
gate costs R, are communicated between processors and are used to perform
the computation of the local cost functions V; (we will discuss computation
models of this type in Section 2.6).

We denote J = (Vi,...,Vin, R1,..., Rm), so that J is a vector of di-
mension n +m. We introduce the mapping H(z,u, J) defined for each of the
n states x by

H(z,u,J) =W¢(z,u, Ve, R1,..., Rm), if x € S,.

where for z € S,

Welw,u, Vi, Ri, - Rn) = Y pay (W)g(@,u,9) + @ > pay(u)Viy
y=1 YyESy

+ Z Pzxy (U)Rs(y);

Y¢Sy

and for each original system state y, we denote by s(y) the index of the subset
to which y belongs [i.e., y € Ss(y]-

We may view H as an abstract mapping on the space of J, and aim to
find its fixed point J* = (Vi*,...,V,n, R}, ..., Ry,). Then, for £ =1,... ,m, we

T See [Berl2al, Section 6.5.2, for a more detailed discussion. Other examples

of algorithmic mappings that come under our framework arise in asynchronous
policy iteration (see Sections 2.6.3, 3.3.2, and [BeY10a], [BeY10b], [YuBl1la]),
and in constrained forms of policy iteration (see [Berllc], or [Berl12a], Exercise
2.7).
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may view V" as an approximation to the optimal cost vector of the original
MDP starting at states € S¢, and we may view R; as a form of aggregate
cost for S¢. The advantage of this formulation is that it involves significant
decomposition and parallelization of the computations among the processors,
when performing various DP algorithms. In particular, the computation of
We(z,u, Ve, Ri,. .., Rm) depends on just the local vector Vi, whose dimension
may be potentially much smaller than n.

1.2.4 Approximation-Related Mappings

Given an abstract DP model described by a mapping H, we may be inter-
ested in fixed points of related mappings other than 7" and 7},. Such map-
pings may arise in various contexts; we have seen one that is related to dis-
tributed asynchronous aggregation in Example 1.2.9. An important context
is subspace approximation, whereby T}, and T are restricted onto a subspace
of functions for the purpose of approximating their fixed points. Much of
the theory of approximate DP and reinforcement learning relies on such ap-
proximations (see e.g., the books by Bertsekas and Tsitsiklis [BeT96], Sut-
ton and Barto [SuB98], Gosavi [Gos03], Cao [Cao07], Chang, Fu, Hu, and
Marcus [CFHO7], Meyn [Mey07], Powell [Pow07], Borkar [Bor08], Haykin
[Hay08], Busoniu, Babuska, De Schutter, and Ernst [BBD10], Szepesvari
[Sze10], Bertsekas [Ber12a], and Vrabie, Vamvoudakis, and Lewis [VVL13]).

For an illustration, consider the approximate evaluation of the cost
vector of a discrete-time Markov chain with states i = 1,...,n. We assume
that state transitions (4,j) occur at time k according to given transition
probabilities p;;, and generate a cost akg(i, j), where o € (0, 1) is a discount
factor. The cost function over an infinite number of stages can be shown to
be the unique fixed point of the Bellman equation mapping T : " — R»
whose components are given by

(TD)(@) =Y pis(u)(9(i, ) + T (7)),  i=1,...,n, J€Rn.
j=1

This is the same as the mapping T in the discounted finite-state MDP
Example 1.2.2, except that we restrict attention to a single policy. Find-
ing the cost function of a fixed policy is the important policy evaluation
subproblem which arises prominently within the context of policy iteration.

The approximation of the fixed point of T" is often based on the so-
lution of lower-dimensional equations defined on the subspace {®PR | R €
Rs} that is spanned by the columns of a given n x s matrix ®. Two
such approximating equations have been studied extensively (see [Berl2al,
Chapter 6, for a detailed account and references; also [BeY07], [BeY09],
[YuB10], [Berlla] for extensions to abstract contexts beyond approximate
DP). These are:

(a) The projected equation
O®R =1I.T(PR), (1.18)
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where II¢ denotes projection onto S with respect to a weighted Eu-
clidean norm

171l :Z&J(i) (1.19)

with € = (&1,...,&,) being a probability distribution with positive
components.

(b) The aggregation equation
®R = ODT(DR), (1.20)

with D being an s X n matrix whose rows are restricted to be probabil-
ity distributions; these are known as the disaggregation probabilities.
Also, in this approach, the rows of ® are restricted to be probability
distributions; they are known as the aggregation probabilities.

We now see that solution of the projected equation (1.18) and the
aggregation equation (1.20) amounts to finding a fixed point of the map-
pings Il T and ®DT, respectively. These mappings derive their structure
from the DP operator T', so they have some DP-like properties, which can
be exploited for analysis and computation.

An important fact is that the aggregation mapping ® DT preserves
the monotonicity and the sup-norm contraction property of 1T', while the
projected equation mapping II¢7" does not. The reason for preservation of
monotonicity is the nonnegativity of the components of the matrices ® and
D. The reason for preservation of sup-norm contraction is that the matrices
® and D are sup-norm nonexpansive, because their rows are probability
distributions. In fact, it can be shown that the solution R of Eq. (1.20)
can be viewed as the exact DP solution of an “aggregate” DP problem that
represents a lower-dimensional approximation of the original (see [Ber12al,
Section 6.5).

By contrast, the projected equation mapping I T need not be mono-
tone, because the components of Il need not be nonnegative. Moreover
while the projection II¢ is nonexpansive with respect to the projection norm
[Ill¢, it need not be nonexpansive with respect to the sup-norm. As a result
the projected equation mapping II¢7" need not be a sup-norm contraction.
These facts play a significant role in approximate DP methodology.

Let us also mention that multistep versions of the mapping T have
been used widely for approximations, particularly in connection with the
projected equation approach. For example, the popular temporal difference
methods, such as TD(A), LSTD()), and LSPE()) (see the book references
on reinforcement learning and approximate DP cited earlier), are based on
the mapping TM) : 7 — R whose components are given by

(T () = (1 - ) iv—lm,f)(i), i=1,...,n, JeRn,
k=1
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for A € (0, 1], where T* is the ¢-fold composition of T" with itself ¢ times.
Here the mapping T is used in place of T in the projected equation
(1.18). In the context of the aggregation equation approach, a multistep
method based on the mapping T is the A\-aggregation method, given for
the case of hard aggregation in [Ber12a], Section 6.5, as well as other forms
of aggregation (see [Berl2a], [YuB12)).

A more general form of multistep approach, introduced and studied
in [YuB12], uses instead the mapping 7() : " s R", with components

(T)T) (@) =D wi(TCI)(E),  i=1,...,n, J€Rn,
(=1

where for each 4, (w;1, ws2, . ..) is a probability distribution over the positive
integers. Then the multistep analog of the projected Eq. (1.18) is

OR = I, T(®)(DR), (1.21)
while the multistep analog of the aggregation Eq. (1.20) is
®R=dDTW)(DR). (1.22)

The mapping T is obtained for w;; = (1 — A)M~1, independently of the
state ¢. The solution of Egs. (1.21) and (1.22) by simulation-based methods
is discussed in [YuB12] and [Yul2].

In fact, a connection between projected equations of the form (1.21)
and aggregation equations of the form (1.22) was established in [YuB12]
through the use of a seminorm [this is given by the same expression as the
norm ||-||¢ of Eq. (1.19), with some of the components of { allowed to be 0].
In particular, the most prominent classes of aggregation equations can be
viewed as seminorm projected equations because it turns out that ®D is a
seminorm projection (see [Berl2a], p. 639, [YuB12], Section 4). Moreover
they can be viewed as projected equations where the projection is oblique
(see [Berl2al, Section 7.3.6).

The preceding observations are important for our purposes, as they in-
dicate that much of the theory developed in this book applies to approxima-
tion-related mappings based on aggregation. However, this is not true to
nearly the same extent for approximation-related mappings based on pro-
jection.

ORGANIZATION OF THE BOOK

The examples of the preceding section have illustrated how the monotonic-
ity assumption is satisfied for many DP models, while the contraction as-
sumption may or may not be satisfied. In particular, the contraction as-
sumption is satisfied for the mapping H in Examples 1.2.1-1.2.5, assuming
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that there is discounting and that the cost per stage is bounded, but it
need not hold in the SSP Example 1.2.6 and the multiplicative Example

1.2.8.

The main theme of this book is that the presence or absence of mono-

tonicity and contraction is the primary determinant of the analytical and
algorithmic theory of a typical total cost DP model. In our development,
with some minor exceptions, we will assume that monotonicity holds. Con-
sequently, the rest of the book is organized around the presence or absence
of the contraction property. In the next four chapters we will discuss the
following four types of models.

(a)

Contractive models: These models, discussed in Chapter 2, have
the richest and strongest algorithmic theory, and are the benchmark
against which the theory of other models is compared. Prominent
among them are discounted stochastic optimal control problems (cf.
Example 1.2.1), finite-state discounted MDP (cf. Example 1.2.2), and
some special types of SSP problems (cf. Example 1.2.6).

Semicontractive models: In these models 7}, is monotone but it
need not be a contraction for all 4 € M. Instead policies are sepa-
rated into those that “behave well” with respect to our optimization
framework and those that do not. It turns out that the notion of
contraction is not sufficiently general for our purposes. We will thus
introduce a related notion of “regularity,” which is based on the idea
that a policy p should be considered “well-behaved” if the dynamic
system defined by 7}, has J,, as an asymptotically stable equilibrium
within some domain. Our models and analysis are patterned to a
large extent after the SSP problems of Example 1.2.6 (the regular u
correspond to the proper policies). One of the complications here is
that policies that are not regular, may have cost functions that take
the value +00 or —oo. Still under certain conditions, which directly
or indirectly guarantee that there exists an optimal regular policy,
the complications can be dealt with, and we can prove strong prop-
erties for these models, sometimes almost as strong as those of the
contractive models.

Noncontractive models: These models rely on just the monotonic-
ity property of T, and are more complex than the preceding ones.
As in semicontractive models, the various cost functions of the prob-
lem may take the values +o0o or —oo, and the mappings 7}, and T
must accordingly be allowed to deal with such functions. However,
the optimal cost function may take the values co and —oo as a matter
of course (rather than on an exceptional basis, as in semicontractive
models). The complications are considerable, and much of the the-
ory of the contractive models generalizes in weaker form, if at all.
For example, in general the fixed point equation J = T'J need not
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have a unique solution, the value iteration method may work start-
ing with some functions but not with others, and the policy iteration
method may not work at all. Of course some of these weaknesses may
not appear in the presence of additional structure, and we will discuss
noncontractive models that also have some semicontractive structure,
and corresponding favorable properties.

(d) Restricted Policies Models: These models are variants of some of
the preceding ones, where there are restrictions of the set of policies,
so that M may be a strict subset of the set of functions p: X — U
with p(z) € U(z) for all z € X. Such restrictions may include mea-
surability (needed to establish a mathematically rigorous probabilistic
framework) or special structure that enhances the characterization of
optimal policies and facilitates their computation.

Examples of DP problems from each of the above model categories,
mostly special cases of the specific DP models discussed in Section 1.2, are
scattered throughout the book, both to illustrate the theory and its excep-
tions, and to illustrate the beneficial role of additional special structure.
The discussion of algorithms centers on abstract forms of value and policy
iteration, and is organized along three characteristics: exact, approrimate,
and asynchronous.

The exact algorithms represent idealized versions, the approximate
represent implementations that use approximations of various kinds, and
the asynchronous involve irregular computation orders, where the costs and
controls at different states are updated at different iterations (for example
the cost of a single state being iterated at a time, as in Gauss-Seidel and
other methods; see [Berl2a]). Approximate and asynchronous implemen-
tations have been the subject of intensive investigations in the last twenty
five years, in the context of the solution of large-scale problems. Some of
this methodology relies on the use of simulation, which is asynchronous by
nature and is prominent in approximate DP and reinforcement learning.

NOTES, SOURCES, AND EXERCISES

The connection between DP and fixed point theory may be traced to Shap-
ley [Shab3], who exploited contraction mappings in analysis of the two-
player dynamic game model of Example 1.2.4. Since that time the under-
lying contraction properties of discounted DP problems with bounded cost
per stage have been explicitly or implicitly used by most authors that have
dealt with the subject. Moreover, the value of the abstract viewpoint as
the basis for economical and insightful analysis has been widely recognized.

An abstract DP model, based on unweighted sup-norm contraction
assumptions, was introduced in the paper by Denardo [Den67]. This model
pointed to the fundamental connections between DP and fixed point the-
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ory, and provided generality and insight into the principal analytical and
algorithmic ideas underlying the discounted DP research up to that time.
Abstract DP ideas were also researched earlier, notably in the paper by
Mitten (Denardo’s Ph.D. thesis advisor) [Mit64]; see also Denardo and
Mitten [DeM67]. The properties of monotone contractions were also used
in the analysis of sequential games by Zachrisson [Zac64].

Denardo’s model motivated a related abstract DP model by the au-
thor [Ber77], which relies only on monotonicity properties, and was pat-
terned after the positive DP problem of Blackwell [Bla65] and the negative
DP problem of Strauch [Str66]. These two abstract DP models were used
extensively in the book by Bertsekas and Shreve [BeST78] for the analysis
of both discounted and undiscounted DP problems, ranging over MDP,
minimax, multiplicative, Borel space models, and models based on outer
integration. Extensions of the analysis of [Ber77] were given by Verdu
and Poor [VeP87], which considered additional structure that allows the
development of backward and forward value iterations, and in the thesis
by Szepesvari [Sze98a], [Sze98b], which introduced non-Markovian poli-
cies into the abstract DP framework. The model of [Ber77] was also used
by Bertsekas [Ber82], and Bertsekas and Yu [BeY10b], to develop asyn-
chronous value and policy iteration methods for abstract contractive and
noncontractive DP models. Another line of related research involving ab-
stract DP mappings that are not necessarily scalar-valued was initiated by
Mitten [Mit74], and was followed up by a number of authors, including
Sobel [Sob75], Morin [Mor82], and Carraway and Morin [CaM88].

Restricted policies models that aim to address measurability issues
in the context of abstract DP were first considered in [BeS98]. Followup
research on this highly technical subject has been limited, and some issues
have not been fully worked out beyond the classical discounted, positive,
and negative stochastic optimal control problems; see Chapter 5.

Generally, noncontractive total cost DP models with some special
structure beyond monotonicity, fall in three major categories: monotone in-
creasing models principally represented by negative DP, monotone decreas-
ing models principally represented by positive DP, and transient models,
exemplified by the SSP model of Example 1.2.6, where the decision process
terminates after a period that is random and subject to control. Abstract
DP models patterned after the first two categories have been known since
[Ber77] and are further discussed in Section 4.3. The semicontractive mod-
els of Chapters 3 and 4, are patterned after the third category, and their
analysis is based on the idea of separating policies into those that are
well-behaved (have contraction-like properties) and those that are not (but
their detrimental effects can be effectively limited thanks to the problem’s
structure). As far as the author knows, this idea is new in the context of
abstract DP. One of the aims of the present monograph is to develop this
idea and to show that it leads to an important and insightful paradigm for
conceptualization and solution of major classes of practical DP problems.
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EXERCISES

1.1 (Multistep Contraction Mappings)

This exercise shows how starting with an abstract mapping, we can obtain mul-
tistep mappings with the same fixed points and a stronger contraction modulus.
Consider a set of mappings T, : B(X) — B(X), u € M, satisfying the con-
traction Assumption 1.2.2, let m be a positive integer, and let M,, be the set
of m-tuples v = (uo, ..., ttm—-1), where up € M, k = 1,...,m — 1. For each

v= (o, ..., m-1) € My, define the mapping T, by
Ty =Ty T, J. v J € B(X).

Hm—1

Show that we have the contraction properties

\T,J =T, J|| <a™|J=J|, VJJ €BX), (1.23)
and _ _
TJ-TJ| <™ —J|, v J,J € B(X), (1.24)
where T is defined by
(TJ)(z) = inf (Tug Ty 1 J) (@), VJeB(X), zeX.

(1O s+ sm—1) EMm,

1.2 (State-Dependent Weighted Multistep Mappings [YuB12])
Consider a set of mappings T, : B(X) — B(X), p € M, satisfying the con-

traction Assumption 1.2.2. Consider also the mappings Téw) : B(X) — B(X)
defined by

(T ) (@) =Y we(@) (Thd) (), =€ X,JeB(X),
=1
where wy(x) are nonnegative scalars such that for all z € X,

Z we(z) = 1.
=1

Show that

T J) () —
(T 9)( )v@) <3 w@ali - Veex,

3
g
S
&
8

=1

where « is the contraction modulus of T}, so that T;Ew) is a contraction with
modulus

oo
& = sup Zwe(z) of <o
reX =1

Show also that 7, and T, ﬁw) have a common fixed point for all ;€ M.



