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SECTION 7.1. Some Useful Inequalities

Problem 1. Let X be a random variable and let α be a positive constant. Show that

P
(
|X| ≥ c

)
≤

E
[
|X|α

]
cα

, for all c > 0.

Problem 2.

(a) Given the information E[X] = 7 and var(X) = 9, use the Chebyshev inequality
to find a lower bound for the probability P(4 < X < 10).

(b) Find the smallest and the largest possible values of the probability P(4 < X <
10), given the mean and variance information from part (a).

Problem 3. Investigate whether the Chebyshev inequality is tight. That is, for every
µ, σ, and c ≥ σ, does there exist a random variable X with mean µ and standard
deviation σ such that

P
(
|X − µ| ≥ c

)
=

σ2

c2
?

Problem 4. Chernoff bound for a Poisson random variable. Let X be a
Poisson random variable with parameter λ.

(a) Show that for every s ≥ 0, we have

P(X ≥ k) ≤ eλ(es−1)e−sk.

(b) Assuming that k > λ, show that

P(X ≥ k) ≤ e−λ(eλ)k

kk
.

SECTION 7.2. The Weak Law of Large Numbers

Problem 5. Bo assumes that X, the height in meters of any Canadian selected by
an equally likely choice among all Canadians, is a random variable with E[X] = h.
Because Bo is sure that no Canadian is taller than 3 meters, he decides to use 1.5
meters as a conservative value for the standard deviation of X. To estimate h, Bo uses
the average of the heights of n Canadians he selects at random.

(a) In terms of h and Bo’s 1.5 meter bound for the standard deviation of X, determine
the expectation and standard deviation of H.

(b) Find as small a value of n as possible such that the standard deviation of Bo’s
estimator is guaranteed to be less than 0.01 meters.

(c) Bo would like to be 99% sure that his estimate is within 5 centimeters of the
true average height of Canadians. Using the Chebyshev inequality, calculate the
minimum value of n that will achieve this objective.
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(d) If we agree that no Canadians are taller than three meters, why is it correct to
use 1.5 meters as an upper bound on the standard deviation for X, the height of
any Canadian selected at random?

SECTION 7.3. Convergence in Probability

Problem 6. Let X1, X2, . . . be independent, identically distributed random variables
with E[X] = 2 and var(X)=9, and let Yi = Xi/2

i. We also define Tn and An to be the
sum and the sample mean, respectively, of the random variables Y1, . . . , Yn.

(a) Evaluate the mean and variance of Yn, Tn, and An.

(b) Does Yn converge in probability? If so, to what value?

(c) Does Tn converge in probability? If so, to what value?

(d) Does An converge in probability? If so, to what value?

Problem 7. Suppose that a sequence Xn of random variables satisfies

lim
n→∞

E
[
|Xn − c|α

]
= 0,

where α is a positive number. Show that the sequence Xn converges to c in probability.

Problem 8. Consider a Poisson process, with mean arrival rate λ = 1, and let Xn be
the number of arrivals between time zero and n. Does Xn/n converge in probability?

Problem 9. Let X1, X2, . . . be independent, identically distributed random variables
with (unknown but finite) mean µ and positive variance. For i = 1, 2, . . ., let

Yi =
1

3
Xi +

2

3
Xi+1.

(a) Are the random variables Yi independent?

(b) Are they identically distributed?

(c) Let

Mn =
1

n

n∑
i=1

Yi.

Show that Mn converges to µ in probability.

Problem 10. Let X1, X2, . . . be a sequence of independent random variables that are
uniformly distributed between 0 and 1. For every n, we let Yn be the median of the
values of X1, X2, . . . , X2n+1. [That is, we order X1, . . . , X2n+1 in increasing order and
let Yn be the (n+ 1)st element in this ordered sequence.] Show that that the sequence
Yn converges to 1/2, in probability.

SECTION 7.4. The Central Limit Theorem

Problem 11. Uncle Henry has been having trouble keeping his weight constant.
In fact, at the end of each week, he notices that his weight has changed by a random

3



amount, uniformly distributed between −0.5 and 0.5 pounds. Assuming that the weight
change during any given week is independent of the weight change of any other week,
find the probability that Uncle Henry will gain or lose more than 3 pounds in the next
50 weeks.

Problem 12. On any given flight, an airline’s goal is to fill the plane as much as
possible, without overbooking. If, on average, 10% of customers cancel their tickets,
all independently of each other, what is the probability that a particular flight will be
overbooked if the airline sells 320 tickets, for a plane that has maximum capacity 300
people? What is the probability that a plane with maximum capacity 150 people will
be overbooked if the airline sells 160 tickets?

Problem 13. Alex puts some pennies into a piggy-bank each day. The number
of pennies added on any given day is equally likely to be 1, 2, 3, 4, 5, or 6, and is
independent from day to day. Find an approximation to the probability that it takes
at least 80 days to collect 3 dollars.

Problem 14. Let X1, . . . , X10 be independent random variables, uniformly dis-
tributed over the unit interval [0, 1].

(a) Estimate P(X1 + · · · + X10 ≥ 7) using the Markov inequality.

(b) Repeat part (a) using the Chebyshev inequality.

(c) Repeat part (a) using the central limit theorem.

Problem 15. Let Sn be the number of successes in n independent Bernoulli trials,
where the probability of success in each trial is p = 1/2. Provide a numerical value for
the limit as n tends to infinity for each of the following three expressions.

(a) P
(
n
2
− 10 ≤ Sn ≤ n

2
+ 10

)
.

(b) P
(
n
2
− n

10
≤ Sn ≤ n

2
+ n

10

)
.

(c) P
(
n
2
−

√
n

2
≤ Sn ≤ n

2
+

√
n

2

)
.

Problem 16. The adult population of Nowhereville consists of 300 males and 196
females. Each male (respectively, female) has a probability of 0.4 (respectively, 0.5)
of casting a vote in the local elections, independently of everyone else. Find a good
numerical approximation for the probability that more males than females cast a vote.

SECTION 7.5. The Strong Law of Large Numbers

Problem 17. Let X1, X2, . . . be a sequence of independent identically distributed
random variables with finite mean and variance. Show that the sequence Yn = Xn/n
converges to zero, with probability 1.

Problem 18. Let X1, X2, . . . be independent identically distributed random variables
with mean 5, variance 9, and such that P(Xn = 0) > 0. For each of the following ways
of defining Zn, determine whether the sequence Zn converges with probability 1, and
if it does, identify the limit.

(a) Zn = (X1 + · · · + Xn)/n.

(b) Zn = (X1 + · · · + Xn − 5n)/
√
n.
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(c) Zn = (X2
1 + · · · + X2

n)/n.

(d) Zn = X1X2 · · ·Xn.

(e) Zn = (X1X2 + X2X3 + · · · + Xn−1Xn)/n.

Problem 19. The fortune Xn of a gambler evolves as Xn = ZnXn−1, where the Zn

are independent identically distributed random variables with PMF

pZ(z) =

{
1/3, for z = 3,
2/3, for z = 1/3.

Assume that X0 = 1.

(a) Show that the expected fortune E[Xn] converges to infinity as n increases.

(b) Show that the actual fortune Xn converges to 0 with probability 1.

Problem 20. Consider a Poisson process with arrival rate λ = 1. We divide the
infinite time axis into disjoint intervals of length 1, 1/2, 1/3, 1/4, etc., so that the
kth interval has length 1/k. These intervals are getting smaller, but their total length
is infinite because

∑∞
k=1

1/k = ∞. Let Zk be the number of arrivals during the kth
interval. Does the sequence Zk converge in probability (and if so, to what)? Does
the sequence Zk converge with probability 1 (and if so, to what)? Provide a brief
justification.
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