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CHAPTER 5: SOLUTION MANUAL

5.1 (Second Order Sufficiency Conditions for Equality-
Constrained Problems)

Define the Lagrangian function L(x, λ) to be

L(x, λ) = f(x) + λ′h(x).

Assume that f and h are twice continuously differentiable, and let x∗ ∈ <n and
λ∗ ∈ <m satisfy

∇xL(x∗, λ∗) = 0, ∇λL(x∗, λ∗) = 0,

y′∇2
xxL(x∗, λ∗)y > 0, ∀ y 6= 0 with ∇h(x∗)′y = 0.

Show that x∗ is a strict local minimum of f subject to h(x) = 0.

Solution: We first prove the following lemma.

Lemma 5.1: Let P andQ be two symmetric matrices. Assume thatQ is positive
semidefinite and P is positive definite on the nullspace of Q, that is, x′Px > 0
for all x 6= 0 with x′Qx = 0. Then there exists a scalar c such that

P + cQ : positive definite, ∀ c > c.

Proof: Assume the contrary. Then for every integer k, there exists a vector xk

with ‖xk‖ = 1 such that

xk
′
Pxk + kxk

′
Qxk ≤ 0.

Since {xk} is bounded, there is a subsequence {xk}k∈K converging to some x,
and since ‖xk‖ = 1 for all k, we have ‖x‖ = 1. Taking the limit superior in the
above inequality, we obtain

x′Px+ lim sup
k→∞, k∈K

(kxk
′
Qxk) ≤ 0. (5.1)

Since, by the positive semidefiniteness of Q, xk
′
Qxk ≥ 0, we see that {xk′Qxk}K

must converge to zero, for otherwise the left-hand side of the above inequality
would be ∞. Therefore, x′Qx = 0 and since P is positive definite, we obtain
x′Px > 0. This contradicts Eq. (5.1). Q.E.D.

Let us introduce now the augmented Lagrangian function

Lc(x, λ) = f(x) + λ′h(x) +
c

2
‖h(x)‖2,
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where c is a scalar. This is the Lagrangian function for the problem

minimize f(x) +
c

2
‖h(x)‖2

subject to h(x) = 0,

which has the same local minima as our original problem of minimizing f(x)
subject to h(x) = 0. The gradient and Hessian of Lc with respect to x are

∇xLc(x, λ) = ∇f(x) +∇h(x)
(
λ+ ch(x)

)
,

∇2
xxLc(x, λ) = ∇2f(x) +

m∑
i=1

(
λi + chi(x)

)
∇2hi(x) + c∇h(x)∇h(x)′.

In particular, if x∗ and λ∗ satisfy the given conditions, we have

∇xLc(x∗, λ∗) = ∇f(x∗) +∇h(x∗)
(
λ∗ + ch(x∗)

)
= ∇xL(x∗, λ∗) = 0, (5.2)

∇2
xxLc(x

∗, λ∗) = ∇2f(x∗) +

m∑
i=1

λ∗i∇2hi(x
∗) + c∇h(x∗)∇h(x∗)′

= ∇2
xxL(x∗, λ∗) + c∇h(x∗)∇h(x∗)′.

By assumption, we have that y′∇2
xxL(x∗, λ∗)y > 0 for all y 6= 0 such that

y′∇h(x∗)∇h(x∗)′y = 0, so by applying Lemma 5.1 with P = ∇2
xxL(x∗, λ∗) and

Q = ∇h(x∗)∇h(x∗)′, it follows that there exists a c such that

∇2
xxLc(x

∗, λ∗) : positive definite, ∀ c > c. (5.3)

Using now the standard sufficient optimality condition for unconstrained
optimization (see e.g., [Ber99a], Section 1.1), we conclude from Eqs. (5.2) and
(5.3), that for c > c, x∗ is an unconstrained local minimum of Lc(·, λ∗). In
particular, there exist γ > 0 and ε > 0 such that

Lc(x, λ
∗) ≥ Lc(x∗, λ∗) +

γ

2
‖x− x∗‖2, ∀ x with ‖x− x∗‖ < ε.

Since for all x with h(x) = 0 we have Lc(x, λ
∗) = f(x), ∇λL(x∗, λ∗) = h(x∗) = 0,

it follows that

f(x) ≥ f(x∗) +
γ

2
‖x− x∗‖2, ∀ x with h(x) = 0, and ‖x− x∗‖ < ε.

Thus x∗ is a strict local minimum of f over h(x) = 0.
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5.2 (Second Order Sufficiency Conditions for Inequality-
Constrained Problems)

Define the Lagrangian function L(x, λ, µ) to be

L(x, λ, µ) = f(x) + λ′h(x) + µ′g(x).

Assume that f , h, and g are twice continuously differentiable, and let x∗ ∈ <n,
λ∗ ∈ <m, and µ∗ ∈ <r satisfy

∇xL(x∗, λ∗, µ∗) = 0, h(x∗) = 0, g(x∗) ≤ 0,

µ∗j > 0, ∀ j ∈ A(x∗), µ∗j = 0, ∀ j /∈ A(x∗),

y′∇2
xxL(x∗, λ∗, µ∗)y > 0,

for all y 6= 0 such that

∇hi(x∗)′y = 0, ∀ i = 1, . . . ,m, ∇gj(x∗)′y = 0, ∀ j ∈ A(x∗).

Show that x∗ is a strict local minimum of f subject to h(x) = 0, g(x) ≤ 0.

Solution: We prove this result by using a transformation to an equality-constrained
problem together with Exercise 5.1. Consider the equivalent equality-constrained
problem

minimize f(x)

subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) + z21 = 0, . . . , gr(x) + z2r = 0,

(5.4),

which is an optimization problem in variables x and z = (z1, . . . , zr). Consider
the vector (x∗, z∗), where z∗ = (z∗1 , . . . , z

∗
r ),

z∗j =
(
−gj(x∗)

)1/2
, j = 1, . . . , r.

We will show that (x∗, z∗) and (λ∗, µ∗) satisfy the sufficiency conditions of Ex-
ercise 5.1, thus showing that (x∗, z∗) is a strict local minimum of problem (5.4),
proving that x∗ is a strict local minimum of the original inequality-constrained
problem.

Let L(x, z, λ, µ) be the Lagrangian function for this problem, i.e.,

L(x, z, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

r∑
j=1

µj
(
gj(x) + z2j

)
.

We have

∇(x,z)L(x∗, z∗, λ∗, µ∗)′=
[
∇xL(x∗, z∗, λ∗, µ∗)′, ∇zL(x∗, z∗, λ∗, µ∗)′

]
=
[
∇xL(x∗, λ∗, µ∗)′, 2µ∗1z

∗
1 , . . . , 2µ

∗
rz
∗
r

]
= [0, 0],
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where the last equality follows since, by assumption, we have∇xL(x∗, λ∗, µ∗) = 0,

and µ∗j = 0 for all j /∈ A(x∗), whereas z∗j =
(
−gj(x∗)

)1/2
= 0 for all j ∈ A(x∗).

We also have

∇(λ,µ)L(x∗, z∗, λ∗, µ∗)′ =
[
h1(x∗), . . . , hm(x∗),(

g1(x∗) + (z∗1)2
)
, . . . ,

(
gr(x

∗) + (z∗r )2
)]

= [0, 0].

Hence the first order conditions of the sufficiency conditions for equality-constrained
problems, given in Exercise 5.1, are satisfied.

We next show that for all (y, w) 6= (0, 0) satisfying

∇h(x∗)′y = 0, ∇gj(x∗)′y + 2z∗jwj = 0, j = 1, . . . , r, (5.5)

we have

( y′ w′ )


∇2
xxL(x∗, λ∗, µ∗) 0

0

2µ∗1 0 . . . 0
0 2µ∗2 . . . 0
...

...
...

...
0 0 . . . 2µ∗r


(
y
w

)
> 0. (5.6)

The left-hand side of the preceding expression can also be written as

y′∇2
xxL(x∗, λ∗, µ∗)y + 2

r∑
j=1

µ∗jw
2
j . (5.7)

Let (y, w) 6= (0, 0) be a vector satisfying Eq. (5.5). We have that z∗j = 0
for all j ∈ A(x∗), so it follows from Eq. (5.5) that

∇hi(x∗)′y = 0, ∀ i = 1, . . . ,m, ∇gj(x∗)′y = 0, ∀ j ∈ A(x∗).

Hence, if y 6= 0, it follows by assumption that

y′∇2
xxL(x∗, λ∗, µ∗)y > 0,

which implies, by Eq. (5.7) and the assumption µ∗j ≥ 0 for all j, that (y, w)
satisfies Eq. (5.6), proving our claim.

If y = 0, it follows that wk 6= 0 for some k = 1, . . . , r. In this case, by using
Eq. (5.5), we have

2z∗jwj = 0, j = 1, . . . , r,

from which we obtain that z∗k must be equal to 0, and hence k ∈ A(x∗). By
assumption, we have that

µ∗j > 0, ∀ j ∈ A(x∗).

This implies that µ∗kw
2
k > 0, and therefore

2

r∑
j=1

µ∗jw
2
j > 0,

showing that (y, w) satisfies Eq. (5.6), completing the proof.
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5.3 (Sensitivity Under Second Order Conditions)

Let x∗ and (λ∗, µ∗) be a local minimum and Lagrange multiplier, respectively, of
the problem

minimize f(x)

subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) ≤ 0, . . . , gr(x) ≤ 0,

(5.8)

satisfying the second order sufficiency conditions of Exercise 5.2. Assume that the
gradients ∇hi(x∗), i = 1, . . . ,m, ∇gj(x∗), j ∈ A(x∗), are linearly independent.
Consider the family of problems

minimize f(x)

subject to h(x) = u, g(x) ≤ v,
(5.9)

parameterized by the vectors u ∈ <m and v ∈ <r. Then there exists an open
sphere S centered at (u, v) = (0, 0) such that for every (u, v) ∈ S there is an
x(u, v) ∈ <n and λ(u, v) ∈ <m, µ(u, v) ∈ <r, which are a local minimum and
associated Lagrange multiplier vectors of problem (5.9). Furthermore, x(·, ·),
λ(·, ·), and µ(·, ·) are continuously differentiable in S and we have x(0, 0) = x∗,
λ(0, 0) = λ∗, µ(0, 0) = µ∗. In addition, for all (u, v) ∈ S, there holds

∇up(u, v) = −λ(u, v),

∇vp(u, v) = −µ(u, v),

where p(u, v) is the optimal cost parameterized by (u, v),

p(u, v) = f
(
x(u, v)

)
.

Solution: We first prove the result for the special case of equality-constrained
problems.

Proposition 5.3: Let x∗ and λ∗ be a local minimum and Lagrange multiplier,
respectively, satisfying the second order sufficiency conditions of Exercise 5.1,
and assume that the gradients ∇hi(x∗), i = 1, . . . ,m, are linearly independent.
Consider the family of problems

minimize f(x)

subject to h(x) = u,
(5.10)

parameterized by the vector u ∈ <m. Then there exists an open sphere S cen-
tered at u = 0 such that for every u ∈ S, there is an x(u) ∈ <n and a λ(u) ∈ <m,
which are a local minimum-Lagrange multiplier pair of problem (5.10). Further-
more, x(·) and λ(·) are continuously differentiable functions within S and we have
x(0) = x∗, λ(0) = λ∗. In addition, for all u ∈ S we have

∇p(u) = −λ(u),
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where p(u) is the optimal cost parameterized by u, that is,

p(u) = f
(
x(u)

)
.

Proof: Consider the system of equations

∇f(x) +∇h(x)λ = 0, h(x) = u. (5.11)

For each fixed u, this system represents n + m equations with n + m unknowns
– the vectors x and λ. For u = 0 the system has the solution (x∗, λ∗). The
corresponding (n+m)× (n+m) Jacobian matrix with respect to (x, λ) is given
by

J =

(
∇2
xxL(x∗, λ∗) ∇h(x∗)

∇h(x∗)′ 0

)
.

Let us show that J is nonsingular. If it were not, some nonzero vector
(y′, z′)′ would belong to the nullspace of J , that is,

∇2
xxL(x∗, λ∗)y +∇h(x∗)z = 0, (5.12)

∇h(x∗)′y = 0. (5.13)

Premultiplying Eq. (5.12) by y′ and using Eq. (5.13), we obtain

y′∇2
xxL(x∗, λ∗)y = 0.

In view of Eq. (5.13), it follows that y = 0, for otherwise our second order suffi-
ciency assumption would be violated. Since y = 0, Eq. (5.12) yields ∇h(x∗)z = 0,
which in view of the linear independence of the columns ∇hi(x∗), i = 1, . . . ,m,
of ∇h(x∗), yields z = 0. Thus, we obtain y = 0, z = 0, which is a contradiction.
Hence, J is nonsingular.

Returning now to the system (5.11), it follows from the nonsingularity of J
and the Implicit Function Theorem that for all u in some open sphere S centered
at u = 0, there exist x(u) and λ(u) such that x(0) = x∗, λ(0) = λ∗, the functions
x(·) and λ(·) are continuously differentiable, and

∇f
(
x(u)

)
+∇h

(
x(u)

)
λ(u) = 0, (5.14)

h
(
x(u)

)
= u.

For u sufficiently close to 0, the vectors x(u) and λ(u) satisfy the second order
sufficiency conditions for problem (5.10), since they satisfy them by assumption
for u = 0. This is straightforward to verify by using our continuity assumptions.
[If it were not true, there would exist a sequence {uk} with uk → 0, and a

sequence {yk} with ‖yk‖ = 1 and ∇h
(
x(uk)

)′
yk = 0 for all k, such that

yk
′∇2

xxL
(
x(uk), λ(uk)

)
yk ≤ 0, ∀ k.
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By taking the limit along a convergent subsequence of {yk}, we would obtain a
contradiction of the second order sufficiency condition at (x∗, λ∗).] Hence, x(u)
and λ(u) are a local minimum-Lagrange multiplier pair for problem (5.10).

There remains to show that ∇p(u) = ∇u
{
f
(
x(u)

)}
= −λ(u). By multi-

plying Eq. (5.14) by ∇x(u), we obtain

∇x(u)∇f
(
x(u)

)
+∇x(u)∇h

(
x(u)

)
λ(u) = 0.

By differentiating the relation h
(
x(u)

)
= u, it follows that

I = ∇u
{
h
(
x(u)

)}
= ∇x(u)∇h

(
x(u)

)
, (5.15)

where I is the m×m identity matrix. Finally, by using the chain rule, we have

∇p(u) = ∇u
{
f
(
x(u)

)}
= ∇x(u)∇f

(
x(u)

)
.

Combining the above three relations, we obtain

∇p(u) + λ(u) = 0, (5.16)

and the proof is complete. Q.E.D.

We next use the preceding result to show the corresponding result for
inequality-constrained problems. We assume that x∗ and (λ∗, µ∗) are a local
minimum and Lagrange multiplier, respectively, of the problem

minimize f(x)

subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) ≤ 0, . . . , gr(x) ≤ 0,

(5.17)

and they satisfy the second order sufficiency conditions of Exercise 5.2. We also
assume that the gradients ∇hi(x∗), i = 1, . . . ,m, ∇gj(x∗), j ∈ A(x∗) are linearly
independent, i.e., x∗ is regular. We consider the equality-constrained problem

minimize f(x)

subject to h1(x) = 0, . . . , hm(x) = 0,

g1(x) + z21 = 0, . . . , gr(x) + z2r = 0,

(5.18)

which is an optimization problem in variables x and z = (z1, . . . , zr). Let z∗ be
a vector with

z∗j =
(
−gj(x∗)

)1/2
, j = 1, . . . , r.

It can be seen that, since x∗ and (λ∗, µ∗) satisfy the second order assumptions
of Exercise 5.2, (x∗, z∗) and (λ∗, µ∗) satisfy the second order assumptions of
Exercise 5.1, thus showing that (x∗, z∗) is a strict local minimum of problem
(5.18)(cf. proof of Exercise 5.2). It is also straightforward to see that since x∗
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is regular for problem (5.17), (x∗, z∗) is regular for problem (5.18). We consider
the family of problems

minimize f(x)

subject to hi(x) = ui, i = 1, . . . ,m,

gj(x) + z2j = vj , j = 1, . . . , r,

(5.19)

parametrized by u and v.
Using Prop. 5.3, given in the beginning of this exercise, we have that there

exists an open sphere S centered at (u, v) = (0, 0) such that for every (u, v) ∈ S
there is an x(u, v) ∈ <n, z(u, v) ∈ <r and λ(u, v) ∈ <m, µ(u, v) ∈ <r, which are
a local minimum and associated Lagrange multiplier vectors of problem (5.19).

We claim that the vectors x(u, v) and λ(u, v) ∈ <m, µ(u, v) ∈ <r are a
local minimum and Lagrange multiplier vector for the problem

minimize f(x)

subject to hi(x) = ui, ∀ i = 1, . . . ,m,

gj(x) ≤ vj , ∀ j = 1, . . . , r.

(5.20)

It is straightforward to see that x(u, v) is a local minimum of the preceding prob-
lem. To see that λ(u, v) and µ(u, v) are the corresponding Lagrange multipliers,
we use the first order necessary optimality conditions for problem (5.19) to write

∇f
(
x(u, v)

)
+

m∑
i=1

λi(u, v)∇hi
(
x(u, v)

)
+

r∑
j=1

µj(u, v)∇gj
(
x(u, v)

)
= 0,

2µj(u, v)zj(u, v) = 0, j = 1, . . . , r.

Since zj(u, v) =
(
vj − gj

(
x(u, v)

))1/2

> 0 for j /∈ A
(
x(u, v)

)
, where

A
(
x(u, v)

)
=
{
j | gj

(
x(u, v)

)
= vj

}
,

the last equation can also be written as

µj(u, v) = 0, ∀ j /∈ A
(
x(u, v)

)
. (5.21)

Thus, to show λ(u, v) and µ(u, v) are Lagrange multipliers for problem (5.20),
there remains to show the nonnegativity of µ(u, v). For this purpose we use the
second order necessary condition for the equivalent equality constrained problem
(5.19). It yields

( y′ w′ )


∇2
xxL
(
x(u, v), λ(u, v), µ(u, v)

)
0

0

2µ1(u, v) 0 . . . 0
0 2µ2(u, v) . . . 0
...

...
...

...
0 0 . . . 2µr(u, v)


(
y
w

)
≥ 0,

(5.22)
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for all y ∈ <n and w ∈ <r satisfying

∇h
(
x(u, v)

)′
y = 0, ∇gj

(
x(u, v)

)′
y + 2zj(u, v)wj = 0, j ∈ A

(
x(u, v)

)
.

(5.23)
Next let us select, for every j ∈ A

(
x(u, v)

)
, a vector (y, w) with y = 0, wj 6= 0,

wk = 0 for all k 6= j. Such a vector satisfies the condition of Eq. (5.23). By using
such a vector in Eq. (5.22), we obtain 2µj(u, v)w2

j ≥ 0, and

µj(u, v) ≥ 0, ∀ j ∈ A
(
x(u, v)

)
.

Furthermore, by Prop. 5.3 given in the beginning of this exercise, it follows
that x(·, ·), λ(·, ·), and µ(·, ·) are continuously differentiable in S and we have
x(0, 0) = x∗, λ(0, 0) = λ∗, µ(0, 0) = µ∗. In addition, for all (u, v) ∈ S, there
holds

∇up(u, v) = −λ(u, v),

∇vp(u, v) = −µ(u, v),

where p(u, v) is the optimal cost of problem (5.19), parameterized by (u, v), which
is the same as the optimal cost of problem (5.20), completing our proof.

5.4 (General Sufficiency Condition)

Consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where f and gj are real valued functions on <n, and X is a subset of <n. Let x∗

be a feasible point, which together with a vector µ∗ = (µ∗1, . . . , µ
∗
r), satisfies

µ∗j ≥ 0, j = 1, . . . , r,

µ∗j = 0, ∀ j /∈ A(x∗),

and minimizes the Lagrangian function L(x, µ∗) over x ∈ X:

x∗ ∈ arg min
x∈X

L(x, µ∗).

Show that x∗ is a global minimum of the problem.

Solution: We have

f(x∗) = f(x∗) + µ∗
′
g(x∗)

= min
x∈X

{
f(x) + µ∗

′
g(x)

}
≤ min
x∈X, g(x)≤0

{
f(x) + µ∗

′
g(x)

}
≤ min
x∈X, g(x)≤0

f(x)

≤ f(x∗),

where the first equality follows from the hypothesis, which implies that µ∗′g(x∗) =
0, the next-to-last inequality follows from the nonnegativity of µ∗, and the last
inequality follows from the feasibility of x∗. It folows that equality holds through-
out, and x∗ is a optimal solution.
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5.5

The purpose of this exercise is to work out an alternative proof of Lemma 5.3.1,
assuming that N = {0} [which corresponds to the case where there is no abstract
set constraint (X = <n)]. Let a0, . . . , ar be given vectors in <n. Suppose that
the set

M =

{
µ ≥ 0

∣∣∣ a0 +

r∑
j=1

µjaj = 0

}
is nonempty, and let µ∗ be the vector of minimum norm in M . For any γ > 0,
consider the function

Lγ(d, µ) =

(
a0 +

r∑
j=1

µjaj

)′
d+

γ

2
‖d‖2 − 1

2
‖µ‖2.

(a) Show that

− 1
2‖µ

∗‖2 = sup
µ≥0

inf
d∈<n

L0(d, µ)

≤ inf
d∈<n

sup
µ≥0

L0(d, µ)

= inf
d∈<n

{
a′0d+ 1

2

r∑
j=1

(
(a′jd)+

)2}
.

(5.24)

(b) Use the lower bound of part (a) and the theory of Section 2.3 on the
existence of solutions of quadratic programs to conclude that the infimum
in the right-hand side above is attained for some d∗ ∈ <n.

(c) Show that for every γ > 0, Lγ has a saddle point (dγ , µγ) such that

µγj = (a′jd
γ)+, j = 1, . . . , r.

Furthermore,

Lγ(dγ , µγ) = −

∥∥∥a0 +
∑r

j=1
µγj aj

∥∥∥2
2γ

− 1

2
‖µγ‖2 ≥ −1

2
‖µ∗‖2.

(d) Use part (c) to show that ‖µγ‖ ≤ ‖µ∗‖, and use the minimum norm prop-
erty of µ∗ to conclude that as γ → 0, we have µγ → µ∗ and Lγ(dγ , µγ)→
−(1/2)‖µ∗‖2.

(e) Use part (d) and Eq. (5.24) to show that (d∗, µ∗) is a saddle point of L0,
and that

a′0d
∗ = −‖µ∗‖2, (a′jd

∗)+ = µ∗j , j = 1, . . . , r.
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Solution: (a) We note that

inf
d∈<n

L0(d, µ) =

{
− 1

2
‖µ‖2 if µ ∈M ,

−∞ otherwise,

so since µ∗ is the vector of minimum norm in M , we obtain for all γ > 0,

−1

2
‖µ∗‖2 = sup

µ≥0

inf
d∈<n

L0(d, µ)

≤ inf
d∈<n

sup
µ≥0

L0(d, µ),

where the inequality follows from the minimax inequality (cf. Chapter 2). For
any d ∈ <n, the supremum of L0(d, µ) over µ ≥ 0 is attained at

µj = (a′jd)+, j = 1, . . . , r.

[to maximize µja
′
jd− (1/2)µ2

j subject to the constraint µj ≥ 0, we calculate the
unconstrained maximum, which is a′jd, and if it is negative we set it to 0, so that
the maximum subject to µj ≥ 0 is attained for µj = (a′jd)+]. Hence, it follows
that, for any d ∈ <n,

sup
µ≥0

L0(d, µ) = a′0d+
1

2

r∑
j=1

(
(a′jd)+

)2
,

which yields the desired relations.

(b) Since the infimum of the quadratic cost function a′0d + 1
2

∑r

j=1

(
(a′jd)+

)2
is

bounded below, as given in part (a), it follows from the results of Section 2.3 that
the infimum of this function is attained at some d∗ ∈ <n.
(c) From the Saddle Point Theorem, for all γ > 0, the coercive convex/concave
quadratic function Lγ has a saddle point, denoted (dγ , µγ), over d ∈ <n and
µ ≥ 0. This saddle point is unique and can be easily characterized, taking
advantage of the quadratic nature of Lγ . In particular, similar to part (a), the
maximization over µ ≥ 0 when d = dγ yields

µγj = (a′jd
γ)+, j = 1, . . . , r. (5.25)

Moreover, we can find Lγ(dγ , µγ) by minimizing Lγ(d, µγ) over d ∈ <n. To find
the unconstrained minimum dγ , we take the gradient of Lγ(d, µγ) and set it equal
to 0. This yields

dγ = −
a0 +

∑r

j=1
µγj aj

γ
.

Hence,

Lγ(dγ , µγ) = −

∥∥∥a0 +
∑r

j=1
µγj aj

∥∥∥2
2γ

− 1

2
‖µγ‖2.
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We also have

−1

2
‖µ∗‖2 = sup

µ≥0

inf
d∈<n

L0(d, µ)

≤ inf
d∈<n

sup
µ≥0

L0(d, µ)

≤ inf
d∈<n

sup
µ≥0

Lγ(d, µ)

= Lγ(dγ , µγ),

(5.26)

where the first two relations follow from part (a), thus yielding the desired rela-
tion.

(d) From part (c), we have

−1

2
‖µγ‖2 ≥ Lγ(dγ , µγ) = −

∥∥∥a0 +
∑r

j=1
µγj aj

∥∥∥2
2γ

− 1

2
‖µγ‖2 ≥ −1

2
‖µ∗‖2. (5.27)

From this, we see that ‖µγ‖ ≤ ‖µ∗‖, so that µγ remains bounded as γ → 0. By
taking the limit above as γ → 0, we see that

lim
γ→0

(
a0 +

r∑
j=1

µγj aj

)
= 0,

so any limit point of µγ , call it µ, satisfies −
(
a0 +

∑r

j=1
µjaj

)
= 0. Since

µγ ≥ 0, it follows that µ ≥ 0, so µ ∈ M . We also have ‖µ‖ ≤ ‖µ∗‖ (since
‖µγ‖ ≤ ‖µ∗‖), so by using the minimum norm property of µ∗, we conclude that
any limit point µ of µγ must be equal to µ∗. Thus, µγ → µ∗. From Eq. (5.27),
we then obtain

Lγ(dγ , µγ)→ −1

2
‖µ∗‖2. (5.28)

(e) Equations (5.26) and (5.28), together with part (b), show that

L0(d∗, µ∗) = inf
d∈<n

sup
µ≥0

L0(d, µ) = sup
µ≥0

inf
d∈<n

L0(d, µ),

[thus proving that (d∗, µ∗) is a saddle point of L0(d, µ)], and that

a′0d
∗ = −‖µ∗‖2, (a′jd

∗)+ = µ∗j , j = 1, . . . , r.

5.6 (Strict Complementarity)

Consider the problem

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . , r,

13



where f : <n 7→ < and gj : <n 7→ < are smooth functions. A Lagrange multi-
plier {µ∗1, . . . , µ∗r}, corresponding to a local minimum x∗, is said to satisfy strict
complementarity if for all j such that gj(x

∗) = 0, we have µ∗j > 0. Show that a
Lagrange multiplier that satisfies strict complementarity need not be informative,
and conversely, a Lagrange multiplier that is informative need not satisfy strict
complementarity.

Solution: Consider the following example

minimize x1 + x2

subject to x1 ≤ 0, x2 ≤ 0, −x1 − x2 ≤ 0.

The only feasible vector is x∗ = (0, 0), which is therefore also the optimal solution
of this problem. The vector (1, 1, 2)′ is a Lagrange multiplier vector which satisfies
strict complementarity. However, it is not possible to find a vector that violates
simultaneously all the constraints, showing that this Lagrange multiplier vector
is not informative.

For the converse statement, consider the example of Fig. 5.1.3. The La-
grange multiplier vectors, that involve three nonzero components out of four, are
informative, but they do not satisfy strict complementarity.

5.7

Consider the problem

minimize

n∑
i=1

fi(xi)

subject to x ∈ S, xi ∈ Xi, i = 1, . . . , n,

where fi : < 7→ < are smooth functions, Xi are closed intervals of real numbers
of <n, and S is a subspace of <n. Let x∗ be a local minimum. Introduce artificial
optimization variables z1, . . . , zn and the linear constraints xi = zi, i = 1, . . . , n,
while replacing the constraint x ∈ S with z ∈ S, so that the problem becomes

minimize

n∑
i=1

fi(xi)

subject to z ∈ S, xi ∈ Xi, xi = zi, i = 1, . . . , n.

Show that there exists a Lagrange multiplier vector λ∗ = (λ∗1, . . . , λ
∗
n) such that

λ∗ ∈ S⊥ and(
∇fi(x∗i ) + λ∗i

)
(xi − x∗i ) ≥ 0, ∀ xi ∈ Xi, i = 1, . . . , n.

Solution: Let x∗ be a local minimum of the problem

minimize

n∑
i=1

fi(xi)

subject to x ∈ S, xi ∈ Xi, i = 1, . . . , n,

14



where fi : < 7→ < are smooth functions, Xi are closed intervals of real numbers
of <n, and S is a subspace of <n. We introduce artificial optimization variables
z1, . . . , zn and the linear constraints xi = zi, i = 1, . . . , n, while replacing the
constraint x ∈ S with z ∈ S, so that the problem becomes

minimize

n∑
i=1

fi(xi)

subject to z ∈ S, xi ∈ Xi, xi = zi, i = 1, . . . , n.

(5.29)

Let a1, . . . , am be a basis for S⊥, the orthogonal complement of S. Then,
we can represent S as

S = {y | a′jy = 0, ∀ j = 1, . . . ,m}.

We also represent the closed intervals Xi as

Xi = {y | ci ≤ y ≤ di}.

With the previous identifications, the constraint set of problem (5.29) can be
described alternatively as

minimize

n∑
i=1

fi(xi)

subject to a′jz = 0, j = 1, . . . ,m,

ci ≤ xi ≤ di, i = 1, . . . , n,

xi = zi, i = 1, . . . , n

[cf. extended representation of the constraint set of problem (5.29)]. This is a
problem with linear constraints, so by Prop. 5.4.1, it admits Lagrange multipliers.
But, by Prop. 5.6.1, this implies that the problem admits Lagrange multipliers in
the original representation as well. We associate a Lagrange multiplier λ∗i with
each equality constraint xi = zi in problem (5.29). By taking the gradient with
respect to the variable x, and using the definition of Lagrange multipliers, we get(

∇fi(x∗i ) + λ∗i
)
(xi − x∗i ) ≥ 0, ∀ xi ∈ Xi, i = 1, . . . , n,

whereas, by taking the gradient with respect to the variable z, we obtain λ∗ ∈ S⊥,
thus completing the proof.

5.8

Show that if X is regular at x∗ the constraint qualifications CQ5a and CQ6 are
equivalent.

Solution: We first show that CQ5a implies CQ6. Assume CQ5a holds:

15



(a) There does not exist a nonzero vector λ = (λ1, . . . , λm) such that

m∑
i=1

λi∇hi(x∗) ∈ NX(x∗).

(b) There exists a d ∈ NX(x∗)∗ = TX(x∗) (since X is regular at x∗) such that

∇hi(x∗)′d = 0, i = 1, . . . ,m, ∇gj(x∗)′d < 0, ∀ j ∈ A(x∗).

To arrive at a contradiction, assume that CQ6 does not hold, i.e., there are
scalars λ1, . . . , λm, µ1, . . . , µr, not all of them equal to zero, such that

(i)

−

(
m∑
i=1

λi∇hi(x∗) +

r∑
j=1

µj∇gj(x∗)

)
∈ NX(x∗).

(ii) µj ≥ 0 for all j = 1, . . . , r, and µj = 0 for all j /∈ A(x∗).

In view of our assumption that X is regular at x∗, condition (i) can be
written as

−

(
m∑
i=1

λi∇hi(x∗) +

r∑
j=1

µj∇gj(x∗)

)
∈ TX(x∗)∗,

or equivalently,(
m∑
i=1

λi∇hi(x∗) +

r∑
j=1

µj∇gj(x∗)

)′
y ≥ 0, ∀ y ∈ TX(x∗). (5.30)

Since not all the λi and µj are equal to 0, we conclude that µj > 0 for at least
one j ∈ A(x∗); otherwise condition (a) of CQ5a would be violated. Since µ∗j ≥ 0
for all j, with µ∗j = 0 for j /∈ A(x∗) and µ∗j > 0 for at least one j, we obtain

m∑
i=1

λi∇hi(x∗)′d+

r∑
j=1

µj∇gj(x∗)′d < 0,

where d ∈ TX(x∗) is the vector in condition (b) of CQ5a. But this contradicts
Eq. (5.30), showing that CQ6 holds.

Conversely, assume that CQ6 holds. It can be seen that this implies
condition (a) of CQ5a. Let H denote the subspace spanned by the vectors
∇h1(x∗), . . . ,∇hm(x∗), and let G denote the cone generated by the vectors
∇gj(x∗), j ∈ A(x∗). Then, the orthogonal complement of H is given by

H⊥ =
{
y | ∇hi(x∗)′y = 0, ∀ i = 1, . . . ,m

}
,

whereas the polar of G is given by

G∗ =
{
y | ∇gj(x∗)′y ≤ 0, ∀ j ∈ A(x∗)

}
,
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(cf. the results of Section 3.1). The interior of G∗ is the set

int(G∗) =
{
y | ∇gj(x∗)′y < 0, ∀ j ∈ A(x∗)

}
.

Under CQ6, we have int(G∗) 6= Ø, since otherwise the vectors ∇gj(x∗), j ∈ A(x∗)
would be linearly dependent, contradicting CQ6. Similarly, under CQ6, we have

H⊥ ∩ int(G∗) 6= Ø. (5.31)

To see this, assume the contrary, i.e., H⊥ and int(G∗) are disjoint. The sets H⊥

and int(G∗) are convex, therefore by the Separating Hyperplane Theorem, there
exists some nonzero vector ν such that

ν′x ≤ ν′y, ∀ x ∈ H⊥, ∀ y ∈ int(G∗),

or equivalently,
ν′(x− y) ≤ 0, ∀ x ∈ H⊥, ∀ y ∈ G∗,

which implies, using also Exercise 3.4., that

ν ∈ (H⊥ −G∗)∗ = H ∩ (−G).

But this contradicts CQ6, and proves Eq. (5.31).
Finally, we show that CQ6 implies condition (b) of CQ5a. Assume, to

arrive at a contradiction, that condition (b) of CQ5a does not hold. This implies
that

NX(x∗)∗ ∩H⊥ ∩ int
(
G∗
)

= Ø.

Since X is regular at x∗, the preceding is equivalent to

TX(x∗) ∩H⊥ ∩ int
(
G∗
)

= Ø.

The regularity of X at x∗ implies that TX(x∗) is convex. Similarly, since the
interior of a convex set is convex and the intersection of two convex sets is convex,
it follows that the set H⊥ ∩ int

(
G∗
)

is convex. It is also nonempty by Eq. (5.31).
Thus, by the Separating Hyperplane Theorem, there exists some vector a 6= 0
such that

a′x ≤ a′y, ∀ x ∈ TX(x∗), ∀ y ∈ H⊥ ∩ int
(
G∗
)
,

or equivalently,

a′(x− y) ≤ 0, ∀ x ∈ TX(x∗), ∀ y ∈ H⊥ ∩G∗,

which implies that
a ∈

(
TX(x∗)− (H⊥ ∩G∗)

)∗
.

We have (
TX(x∗)− (H⊥ ∩G∗)

)∗
= TX(x∗)∗ ∩

(
−(H⊥ ∩G∗)∗

)
= TX(x∗)∗ ∩

(
−
(
cl(H +G)

))
= TX(x∗)∗ ∩

(
−(H +G)

)
= NX(x∗) ∩

(
−(H +G)

)
,
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where the second equality follows since H⊥ and G∗ are closed and convex, and
the third equality follows since H and G are both polyhedral cones (cf. Chapter
3). Combining the preceding relations, it follows that there exists a nonzero
vector a that belongs to the set

NX(x∗) ∩
(
−(H +G)

)
.

But this contradicts CQ6, thus completing our proof.

5.9 (Minimax Problems)

Derive Lagrange multiplier-like optimality conditions for the minimax problem

minimize max
{
f1(x), . . . , fp(x)

}
subject to x ∈ X,

where X is a closed set, and the functions fi are smooth. Hint : Convert the
problem to the smooth problem

minimize z

subject to x ∈ X, fi(x) ≤ z, i = 1, . . . , p,

and show that CQ5 holds.

Solution: Let x∗ be a local minimum of the minimax problem,

minimize max
{
f1(x), . . . , fp(x)

}
subject to x ∈ X.

We introduce an additional scalar variable z and convert the preceding problem
to the smooth problem

minimize z

subject to x ∈ X, fi(x) ≤ z, i = 1, . . . , p,

which is an optimization problem in the variables x and z and with an abstract
set constraint (x, z) ∈ X ×<. Let

z∗ = max
{
f1(x∗), . . . , fp(x

∗)
}
.

It can be seen that (x∗, z∗) is a local minimum of the above problem.
It is straightforward to show that

NX×<(x∗, z∗) = NX(x∗)× {0}, (5.32)

and
NX×<(x∗, z∗)∗ = NX(x∗)∗ ×<. (5.33)
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Let d = (0, 1). By Eq. (5.33), this vector belongs to the set NX×<(x∗, z∗)∗, and
also

[∇fi(x∗)′, −1]

(
0
1

)
= −1 < 0, ∀ i = 1, . . . , p.

Hence, CQ5a is satisfied, which together with Eq. (5.32) implies that there exists
a nonnegative vector µ∗ = (µ∗1, . . . , µ

∗
p) such that

(i) −
(∑p

j=1
µ∗j∇fj(x∗)

)
∈ NX(x∗).

(ii)
∑p

j=1
µ∗j = 1.

(iii) For all j = 1, . . . , p, if µ∗j > 0, then

fj(x
∗) = max

{
f1(x∗), . . . , fp(x

∗)
}
.

5.10 (Exact Penalty Functions)

Consider the problem

minimize f(x)

subject to x ∈ C,
(5.34)

where

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩
{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
,

and assume that f , hi, and gj are smooth functions. Let Fc be the exact penalty
function, i.e.,

Fc(x) = f(x) + c

(
m∑
i=1

|hi(x)|+
r∑
j=1

g+j (x)

)
,

where c is a positive scalar.

(a) Suppose that x∗ is a local minimum of problem (5.34), and that for some
given c > 0, x∗ is also a local minimum of Fc over X. Show that there
exists an R-multiplier vector (λ∗, µ∗) for problem (5.34) such that

|λ∗i | ≤ c, i = 1, . . . ,m, µ∗j ∈ [0, c], j = 1, . . . , r. (5.35)

(b) Derive conditions that guarantee that if x∗ is a local minimum of problem
(5.34) and (λ∗, µ∗) is a corresponding Lagrange multiplier vector, then x∗

is also a local minimum of Fc over X for all c such that Eq. (5.35) holds.

Solution: We consider the problem

minimize f(x)

subject to x ∈ C,
(5.36)
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where

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩
{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
,

and the exact penalty function

Fc(x) = f(x) + c

(
m∑
i=1

|hi(x)|+
r∑
j=1

g+j (x)

)
,

where c is a positive scalar.

(a) In view of our assumption that, for some given c > 0, x∗ is also a local
minimum of Fc over X, we have, by Prop. 5.5.1, that there exist λ1, . . . , λm and
µ1, . . . , µr such that

−

(
∇f(x∗) + c

(
m∑
i=1

λi∇hi(x∗) +

r∑
j=1

µj∇gj(x∗)

))
∈ NX(x∗),

λi = 1 if hi(x
∗) > 0, λi = −1 if hi(x

∗) < 0,

λi ∈ [−1, 1] if hi(x
∗) = 0,

µj = 1 if gj(x
∗) > 0, µj = 0 if gj(x

∗) < 0,

µj ∈ [0, 1] if gj(x
∗) = 0.

By the definition of R-multipliers, the preceding relations imply that the vector
(λ∗, µ∗) = c(λ, µ) is an R-multiplier for problem (5.36) such that

|λ∗i | ≤ c, i = 1, . . . ,m, µ∗j ∈ [0, c], j = 1, . . . , r. (5.37)

(b) Assume that the functions f and the gj are convex, the functions hi are
linear, and the set X is convex. Since x∗ is a local minimum of problem (5.36),
and (λ∗, µ∗) is a corresponding Lagrange multiplier vector, we have by definition
that(
∇f(x∗) +

(
m∑
i=1

λ∗i∇hi(x∗) +

r∑
j=1

µ∗j∇gj(x∗)

))′
(x− x∗) ≥ 0, ∀ x ∈ X.

In view of the convexity assumptions, this is a sufficient condition for x∗ to be a
local minimum of the function f(x) +

∑m

i=1
λ∗i hi(x) +

∑r

j=1
µ∗jgj(x) over x ∈ X.

Since x∗ is feasible for the original problem, and (λ∗, µ∗) satisfy Eq. (5.37), we
have for all x ∈ X,

FC(x∗)= f(x∗)

≤ f(x) +

m∑
i=1

λ∗i hi(x) +

r∑
j=1

µ∗jgj(x)

≤ f(x) + c

(
m∑
i=1

hi(x) +

r∑
j=1

gj(x)

)

≤ f(x) + c

(
m∑
i=1

|hi(x)|+
r∑
j=1

g+j (x)

)
= Fc(x),
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implying that x∗ is a local minimum of Fc over X.

5.11 (Extended Representations)

This exercise generalizes Prop. 5.6.1 by including an additional set constraint in
the extended representation. Assume that the set constraint can be described as

X =
{
x ∈ X | hi(x) = 0, i = m+ 1, . . . ,m, gj(x) ≤ 0, j = r + 1, . . . , r

}
,

so that C is represented alternatively as

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}
∩
{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}
.

We call this the extended representation of C. Assuming that X is closed and
that all the functions hi and gj are smooth, show the following:

(a) If the constraint set admits Lagrange multipliers in the extended represen-
tation, it admits Lagrange multipliers in the original representation.

(b) If the constraint set admits an exact penalty in the extended representation,
it admits an exact penalty in the original representation.

Solution: (a) The hypothesis implies that for every smooth cost function f
for which x∗ is a local minimum there exist scalars λ∗1, . . . , λ

∗
m and µ∗1, . . . , µ

∗
r

satisfying(
∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) +

r∑
j=1

µ∗j∇gj(x∗)

)′
y ≥ 0, ∀ y ∈ T

X
(x∗), (5.38)

µ∗j ≥ 0, ∀ j = 1, . . . , r,

µ∗j = 0, ∀ j /∈ A(x∗),

where
A(x∗) =

{
j | gj(x∗) = 0, j = 1, . . . , r

}
.

Since X ⊂ X, we have TX(x∗) ⊂ T
X

(x∗), so Eq. (5.38) implies that(
∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) +

r∑
j=1

µ∗j∇gj(x∗)

)′
y ≥ 0, ∀ y ∈ TX(x∗). (5.39)

Let V (x∗) denote the set

V (x∗) =
{
y | ∇hi(x∗)′y = 0, i = m+ 1, . . . ,m,

∇gj(x∗)′y ≤ 0, j = r + 1, . . . , r with j ∈ A(x∗)
}
.

We claim that TX(x∗) ⊂ V (x∗). To see this, let y be a nonzero vector that
belongs to TX(x∗). Then, there exists a sequence {xk} ⊂ X such that xk 6= x∗

for all k and
xk − x∗

‖xk − x∗‖
→ y

‖y‖ .
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Since xk ∈ X, for all i = m+ 1, . . . ,m and k, we have

0 = hi(xk) = hi(x
∗) +∇hi(x∗)′(xk − x∗) + o(‖xk − x∗‖),

which can be written as

∇hi(x∗)′
(xk − x∗)
‖xk − x∗‖

+
o(‖xk − x∗‖)
‖xk − x∗‖

= 0.

Taking the limit as k →∞, we obtain

∇hi(x∗)′y = 0, ∀ i = m+ 1, . . . ,m. (5.40)

Similarly, we have for all j = r + 1, . . . , r with j ∈ A(x∗) and for all k

0 ≥ gj(xk) = gj(x
∗) +∇gj(x∗)′(xk − x∗) + o(‖xk − x∗‖),

which can be written as

∇gj(x∗)′
(xk − x∗)
‖xk − x∗‖

+
o(‖xk − x∗‖)
‖xk − x∗‖

≤ 0.

By taking the limit as k →∞, we obtain

∇gj(x∗)′y ≤ 0, ∀ j = r + 1, . . . , r with j ∈ A(x∗).

Equation (5.40) and the preceding relation imply that y ∈ V (x∗), showing that
TX(x∗) ⊂ V (x∗).

Hence Eq. (5.39) implies that(
∇f(x∗) +

m∑
i=1

λ∗i∇hi(x∗) +

r∑
j=1

µ∗j∇gj(x∗)

)′
y ≥ 0, ∀ y ∈ TX(x∗),

and it follows that λ∗i , i = 1, . . . ,m, and µ∗j , j = 1, . . . , r, are Lagrange multipliers
for the original representation.

(b) Consider the exact penalty function for the extended representation:

F c(x) = f(x) + c

(
m∑
i=1

|hi(x)|+
r∑
j=1

g+j (x)

)
.

We have Fc(x) = F c(x) for all x ∈ X. Hence if x∗ ∈ C is a local minimum of
F c(x) over x ∈ X, it is also a local minimum of Fc(x) over x ∈ X. Thus, for a
given c > 0, if x∗ is both a strict local minimum of f over C and a local minimum
of F c(x) over x ∈ X, it is also a local minimum of Fc(x) over x ∈ X.
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