
LESSONS FROM ALPHAZERO FOR
OPTIMAL, MODEL PREDICTIVE, AND ADAPTIVE CONTROL

Dimitri P. Bertsekas
Arizona State University

Lecture at KTH on Nov. 17, 2021

Summary of my forthcoming book, Summer 2022

Draft of the book, related videolectures, and a copy of these slides can be obtained
from my website

http://web.mit.edu/dimitrib/www/RLbook.html

Based on analysis from my books
Rollout, Policy Iteration, and Distributed Reinforcement Learning, 2020

Abstract Dynamic Programming, 2nd Edition, 2018
Reinforcement Learning and Optimal Control 2019

Bertsekas Lessons from AlphaZero November 2021 1 / 38

Chess and Backgammon - Off-Line Training and On-Line Play

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

Subspace M = {�r | r 2 <m} Based on J̃µ(i, r) Jµk

1

Uncertainty System Environment Cost Control Current State i

Controller Production Center Delay Retail Storage Demand

Possible Moves Average Score by Monte-Carlo Simulation

Current Position and Dice Roll

��1,�2,�(x) = ��1,�(x) � ��2,�(x) �3 �4 (a) (b) ��1,�2,�3,�4,�(x)

x �(x � �3) �(x � �4) + � max{0, ⇠} Linear Unit Rectifier ��,�(x)
Slope � �

High Cost Suboptimal u0 “Deceptive” Low Cost u Optimal trajectory
` + 1 Stages Optimal trajectory

(ciy � bi)2 R mini y⇤
i maxi y⇤

i

J̃k+1(xk+1) = min
uk+12Uk+1(xk+1)

E
n

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

�
fk+1(xk+1, uk+1, wk+1)

�o
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree `-Step
Shortest path problem xk xk States xk+1 States xk+2 u u0

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+`

Rollout, Model Predictive Control

b+
k b�k Permanent trajectory P k Tentative trajectory T k

min
uk

E
n

gk(xk, uk, wk)+J̃k+1(xk+1)
o

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u⇤
0, . . . , u⇤

k, . . . , u⇤
N�1} Simplify E{·}

Tail subproblem Time x⇤
k Future Stages Terminal Cost k N

Stage k Future Stages Terminal Cost gN (xN)

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x0
N

ũk uk x̃k+1 xk+1 x̃N xN x0
N

�r = ⇧
�
T

(�)
µ (�r)

�
⇧(Jµ) µ(i) 2 arg minu2U(i) Q̃µ(i, u, r)

1

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

State xk Policy µ̃k(xk, rk) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

N Stages jN−1 jN i ∈ Ix j ∈ Iy

Sx1 Sxℓ Sxm x1 xℓ xm r∗
x1 r∗

xℓ r∗
xm Footprint Sets J̃(i) J̃(j) =

∑
y∈A φjyr∗

y

min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ̃(j)

)
i = x Ix

π/4 Sample State xs
k Sample Control us

k Sample Next State xs
k+1 Sample Transition Cost gs

k Simulator

1

Both AlphaZero (2017) and TD-Gammon (1996) involve two algorithms:
Off-line training of value and/or policy neural network approximations

On-line play by multistep lookahead, rollout, and cost function approximation

Strong connections to DP, policy iteration, and RL-type methodology
We are aiming to understand this methodology, so it applies far more generally

We focus on connections with control system design (MPC and adaptive control),
but there are extensions to discrete optimization

Bertsekas Lessons from AlphaZero November 2021 2 / 38

On-Line Play in AlphaZero/AlphaGo/TD-Gammon: Approximation in
Value Space (Also Called “On-Line Tree Search")

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

s i1 im�1 im . . .

j1 j2 j3 j4

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

1

s i1 im�1 im . . .

j1 j2 j3 j4

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

On-line play uses the results of off-line training, which are: A position evaluator
and a base player
It aims to improve the base player by:

I Searching forward for several moves through the lookahead tree
I Simulating the base player for some more moves at the tree leaves
I Approximating the effect of future moves by using the terminal position evaluation
I Calculating the “values" of the available moves at the root and playing the best move

Similarities with Model Predictive Control (MPC) architecture

Bertsekas Lessons from AlphaZero November 2021 3 / 38

Off-Line Training in AlphaZero: Approximate Policy Iteration (PI) Using
Self-Generated Data

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

dfi = 0 if i /∈ If̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

ĝ(f, u) =
n∑

i=1

dfi

n∑

j=1

pij(u)g(i, u, j)

Representative Features Feature Space F F (j) φjf1 φjf2 φjf3 φjf4

f1 f2 f3 f4 f5 f6 f7

Neural Network Features Approximate Cost J̃µ Policy Improvement

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}

Representative Feature States dfi f f̄ with Aggregation

Current Policy µ Improved Policy µ̃µ̂

TµΦr Φr = ΠTµΦr

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {Φr | s ∈ ℜs} ∑s
ℓ=1 Fℓ(i, v)rℓ

r = (r1, . . . , rs)

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

Cost = 2αϵ rk+1 = arg min
r∈ℜs

m∑

t=1

Nt−1∑

τ=0

(
φ(iτ,t)′r − cτ,t(rk)

)2

µℓ

µ
1 − µℓ

µ

1

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

dfi = 0 if i /∈ If̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

ĝ(f, u) =
n∑

i=1

dfi

n∑

j=1

pij(u)g(i, u, j)

Representative Features Feature Space F F (j) φjf1 φjf2 φjf3 φjf4

f1 f2 f3 f4 f5 f6 f7

Neural Network Features Approximate Cost J̃µ Policy Improvement

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}

Representative Feature States dfi f f̄ with Aggregation

Current Policy µ Improved Policy µ̃µ̂

TµΦr Φr = ΠTµΦr

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {Φr | s ∈ ℜs} ∑s
ℓ=1 Fℓ(i, v)rℓ

r = (r1, . . . , rs)

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

Cost = 2αϵ rk+1 = arg min
r∈ℜs

m∑

t=1

Nt−1∑

τ=0

(
φ(iτ,t)′r − cτ,t(rk)

)2

µℓ

µ
1 − µℓ

µ

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation

U U1 U2

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

Extrapolation by a Factor of 2 T (λ) = P (c) · T = T · P (c)

Extrapolation Formula T (λ) = P (c) · T = T · P (c)

Multistep Extrapolation T (λ) = P (c) · T = T · P (c)

1

φjf̄ =

{
1 if j ∈ If̄

0 if j /∈ If̄

dfi = 0 if i /∈ If̄

p̂ff̄(u) =

n∑

i=1

dfi

n∑

j=1

pij(u)φjf̄

ĝ(f, u) =
n∑

i=1

dfi

n∑

j=1

pij(u)g(i, u, j)

Representative Features Feature Space F F (j) φjf1 φjf2 φjf3 φjf4

f1 f2 f3 f4 f5 f6 f7

Neural Network Features Approximate Cost J̃µ Policy Improvement

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}

Representative Feature States dfi f f̄ with Aggregation

Current Policy µ Improved Policy µ̃µ̂

TµΦr Φr = ΠTµΦr

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {Φr | s ∈ ℜs} ∑s
ℓ=1 Fℓ(i, v)rℓ

r = (r1, . . . , rs)

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

Cost = 2αϵ rk+1 = arg min
r∈ℜs

m∑

t=1

Nt−1∑

τ=0

(
φ(iτ,t)′r − cτ,t(rk)

)2

µℓ

µ
1 − µℓ

µ

1

Neural Net Policy Evaluation Improvement of Current Policy µ by
Lookahead Min

States xk+1 States xk+2 xk Heuristic/ Suboptimal Base Policy

Approximation J̃

Adaptive Simulation Terminal cost approximation Heuristic Policy
Simulation with

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Neural Network Policy Evaluation Improvement of Current Policy µ
by Lookahead Min

States xk+1 States xk+2 xk Heuristic/ Suboptimal Base Policy

Approximation J̃

Adaptive Simulation Terminal cost approximation Heuristic Policy
Simulation with

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Neural Network Policy Evaluation Improvement of Current Policy µ
by Lookahead Min

States xk+1 States xk+2 xk Heuristic/ Suboptimal Base Policy

Approximation J̃

Adaptive Simulation Terminal cost approximation Heuristic Policy
Simulation with

Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture

r: Vector of weights

Position “values” Move “probabilities”

Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

Value Policy

Termination State Infinite Horizon Approximation Subspace Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

Controls u ∈ U(x)

x y Shortest N -Stage Distance x-to-y J∗(1) = J∗(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) =

αJk(2) (2αrk, 2αrk)

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

The current player is used to train an improved player, and the process is repeated

The current player is “evaluated" by playing many games

Its evaluation function is represented by a value neural net through training

The current player is “improved" by using a form of approximate multistep
lookahead minimization, called Monte-Carlo Tree Search (MCTS)

The “improved player" is represented by a policy neural net through training

TD-Gammon uses similar PI algorithm for off-line training of a value network (does
not use MCTS and does not use a policy network)

Bertsekas Lessons from AlphaZero November 2021 4 / 38

Some Major Empirical Observations

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

bk Belief States bk+1 bk+2 Policy µ m Steps

Truncated Rollout Policy µ m Steps

B(b, u, z) h(u) Artificial Terminal to Terminal Cost gN(xN) ik bk ik+1 bk+1 ik+2 uk uk+1 uk+2

Original System Observer Controller Belief Estimator zk+1 zk+2 with Cost gN (xN)

µ COMPOSITE SYSTEM SIMULATOR FOR POMDP

(a) (b) Category c̃(x, r̄) c∗(x) System PID Controller yk y ek = yk − y + − τ Object x h̃c(x, r̄) p(c | x)

uk = rpek + rizk + rddk ξij(u) pij(u)

Aggregate States j ∈ S f(u) u u1 = 0 u2 uq uq−1 . . . b = 0 b∗ b∗ = Optimized b Transition Cost

Policy Improvement by Rollout Policy Space Approximation of Rollout Policy at state i

One-step Lookahead with J̃(j) =
∑

y∈A φjyr∗
y

p(z; r) 0 z r r + ϵ1 r + ϵ2 r + ϵm r − ϵ1 r − ϵ2 r − ϵm · · · p1 p2 pm

... (e.g., a NN) Data (xs, cs)

V Corrected V Solution of the Aggregate Problem Transition Cost Transition Cost J∗

Start End Plus Terminal Cost Approximation S1 S2 S3 Sℓ Sm−1 Sm

Disaggregation Probabilities dxi dxi = 0 for i /∈ Ix Base Heuristic Truncated Rollout

Aggregation Probabilities φjy φjy = 1 for j ∈ Iy

Maxu State xk Policy µ̃k(xk, rk) h̃(u, xk, rk) h̃(c, x, r) h̃u(xk, rk) Randomized Policy Idealized

Generate “Improved” Policy µ̃ by µ̃(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

State i y(i) Ay(i) + b φ1(i, v) φm(i, v) φ2(i, v) Ĵ(i, v) = r′φ(i, v)

Deterministic Transition xk+1 = fk(xk, uk)

Aggregate Problem Cost Vector r∗ J̃1 = Corrected V Enlarged State Space

Aggregate States Cost J̃0 Cost J̃1 Cost r∗ *Best Score*

Representative States Controls u are associated with states i Optimal Aggregate Costs r∗
x y1 y2 y3

1

s i1 im�1 im . . .

j1 j2 j3 j4

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

1

s i1 im�1 im . . .

j1 j2 j3 j4

p(j1) p(j2) p(j3) p(j4)

Neighbors of im Projections of Neighbors of im

State x Feature Vector �(x) Approximator �(x)0r

` Stages Riccati Equation Iterates P P0 P1 P2 �2 � 1 �2P
P+1

Cost of Period k Stock Ordered at Period k Inventory System
r(uk) + cuk xk+1 = xk + u + k � wk

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

1

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk)

x0 x1 xk xN uk xk+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

W+ =
{
J | J ≥ J+, J(t) = 0

}

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING

6 1 3 2 9 5 8 7 10

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

Wp′ : Functions J ≥ Ĵp′ with J(xk) → 0 for all p′-stable π

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

The AlphaZero on-line player plays much better
than the off-line-trained player

TD-Gammon plays much better with truncated rollout
than without rollout (Tesauro, 1996)

We will aim for explanations, insights, and generalizations through

abstract Bellman operators, visualization, and a focus on the
central role of Newton’s method

Bertsekas Lessons from AlphaZero November 2021 5 / 38

Principal Viewpoints of this Talk

On-line play is a single step of Newton’s method for solving the Bellman equation
(or Newton-SOR in case of multistep lookahead and/or truncated rollout)

Off-line training provides the start point for the Newton step

On-line play is the real workhorse ... off-line training plays a secondary role.
A major reason: On-line play is an exact Newton step. It is not degraded by NN
approximations

Imperfections/differences in off-line training affect the start point, but are washed
out by the (superlinear) Newton step

A cultural difference that we will aim to bridge:
I Reinforcement Learning/AI research is focused largely on off-line training issues

(except in the special case of armed bandit problems)
I Model Predictive and Adaptive Control research is focused largely on on-line play and

stability issues

Adaptive control with multistep lookahead and rollout is an exact Newton step
applied to an on-line estimated Bellman equation ... It’s still a Newton step!

All of this applies in great generality through the power of abstract DP (arbitrary
state and control spaces, stochastic, deterministic, hybrid systems, multiagent
systems, minimax, finite and infinite horizon, discrete optimization)

Bertsekas Lessons from AlphaZero November 2021 6 / 38

On Viewpoints and Objective Truth

Bertsekas Lessons from AlphaZero November 2021 7 / 38

Outline

1 Discounted and undiscounted infinite horizon problems

2 Abstract DP concepts: Bellman operators and Bellman equations

3 Visualization of on-line play as a Newton step

4 Region of stability and its visualization

5 Rollout and policy iteration visualizations

6 Linear quadratic problem visualizations

7 Model predictive control

8 Adaptive control with model estimation (indirect adaptive control)

Bertsekas Lessons from AlphaZero November 2021 8 / 38

Infinite Horizon Problems

......
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Permanent trajectory P k Tentative trajectory T k

Stage k Future Stages

Control uk Cost gk(xk, uk) x0 xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1

Candidate (m+2)-Solutions (ũ1, . . . , ũm, um+1, um+2) (m+2)-Solution

Set of States (u1) Set of States (u1, u2) Set of States (u1, u2, u3)

Run the Heuristics From Each Candidate (m+2)-Solution (ũ1, . . . , ũm, um+1)

Set of States (ũ1) Set of States (ũ1, ũ2) Neural Network

Set of States u = (u1, . . . , uN) Current m-Solution (ũ1, . . . , ũm)

Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)

Cost G(u) Heuristic N -Solutions

Piecewise Constant Aggregate Problem Approximation

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

(
F (i)

)

R1 R2 R3 Rℓ Rq−1 Rq r∗
q−1 r∗

3 Cost Ĵµ

(
F (i)

)

I1 I2 I3 Iℓ Iq−1 Iq r∗
2 r∗

3 Cost Ĵµ

(
F (i)

)

Aggregate States Scoring Function V (i) J∗(i) 0 n n − 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

Iteration Index k PI index k Jµk J⇤ 0 1 2 . . . Error Zone Width (✏ + 2↵�)/(1 � ↵)2

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy µ Width (✏ + 2↵�)/(1 � ↵)

Random Transition xk+1 = fk(xk, uk, wk) Random Cost gk(xk, uk, wk)

Control v (j, v) Cost = 0 State-Control Pairs Transitions under policy µ Evaluate Cost Function

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation Terminal Cost Function

Limited Rollout Selective Depth Adaptive Simulation Policy µ Approximation J̃

u Q̃k(xk, u) Qk(xk, u) uk ũk Qk(xk, u) � Q̃k(xk, u)

x0 xk x1
k+1 x2

k+1 x3
k+1 x4

k+1 States xN Base Heuristic ik States ik+1 States ik+2

Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost Heuristic “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk Control uk = µk(pk) . . . Q-Factors Current State xk

x0 x1 xk xN x0
N x00

N uk u0
k u00

k xk+1 x0
k+1 x00

k+1

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

1

xk+1 = f(xk, uk, wk) g(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) ↵kg(xk, uk, wk)

Termination State

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation d`i

�j`

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
�
F (i)

�

Plays di↵erent! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +

k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1

c

T (�)(x) = T (x) x = P (c)(x)

1

xk+1 = f(xk, uk, wk) αkg(xk, uk, wk)

Termination State Infinite Horizon

Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Infinite number of stages, and stationary system and cost

System xk+1 = f (xk , uk ,wk) with state, control, and random disturbance

Stationary policies x 7→ µ(x) satisfying a control constraint µ(x) ∈ U(x) for all x

Cost of stage k : αk g
(
xk , µ(xk),wk

)
; 0 < α ≤ 1 is the discount factor

Cost of a policy µ: The limit as N →∞ of the N-stage costs

Jµ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µ(xk),wk

)}

Optimal cost function J∗(x0) = minµ Jµ(x0)

Discounted problems: α < 1 and g is bounded (the “nice" case)

Stochastic shortest path problems: α = 1 and special cost-free termination state t

Control/MPC-type problems: Deterministic, g ≥ 0, termination state is t = 0

Bertsekas Lessons from AlphaZero November 2021 10 / 38

Infinite Horizon Problems - Main (Exact DP) Theory

J∗ satisfies Bellman’s equation:

J∗(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ∗

(
f (x , u,w)

)}
, for all states x (uniquely ??)

Optimality condition: If µ∗(x) attain the min in the Bellman equation for every
x , the policy µ∗ is optimal (??)

Value iteration (VI): Generates cost function sequence {Jk}

Jk (x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJk−1

(
f (x , u,w)

)}
, J0 is “arbitrary" (??)

Policy Iteration (PI): Generates sequences of policies {µk} and their cost
functions {Jµk }; µ0 is “arbitrary" (??)

The typical iteration starts with a policy µ and generates a new policy µ̃ in two steps:

Policy evaluation step, which computes the cost function Jµ
Policy improvement step, which computes the improved policy µ̃ using

µ̃(x) ∈ arg min
u∈U(x)

Ew

{
g(x , u,w) + αJµ

(
f (x , u,w)

)}
Bertsekas Lessons from AlphaZero November 2021 11 / 38

On-Line Approximation in Value Space

Replace J∗ with an approximation J̃ in Bellman’s equation
min

u∈U(x)
E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Approximate Q-Factor Q̃(x, u) At x

System: xk+1 = 2xk + uk Control constraint: |uk| ≤ 1

Cost per stage: x2
k + u2

k

{X0, X1, . . . , XN} must be reachable Largest reachable tube

x0 Control uk (ℓ − 1)-Stages Base Heuristic Minimization

Target Tube 0 k Sample Q-Factors (ℓ − 1)-Stages State xk+ℓ = 0

Complete Tours Current Partial Tour Next Cities Next States

Q1,n +R1,n Q2,n +R2,n Q3,n +R3,n Stage k Stages k+1, . . . , k+ ℓ−1

Base Heuristic Minimization Possible Path

Simulation Nearest Neighbor Heuristic Move to the Right Possible
Path

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+J̃k+2

(
fk+1(xk+1, uk+1, wk+1)

)}
,

2-Step Lookahead (onestep lookahead plus one step approx-
imation)

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ-Step
Shortest path problem xk xk States xk+1 States xk+2 u u′

Truncated Rollout Terminal Cost Approximation J̃

Parametric approximation Neural nets Discretization

Parametric approximation Neural nets Discretization

Cost Function Approximation J̃k+ℓ

Rollout, Model Predictive Control

Rollout Control ũk Rollout Policy µ̃k Base Policy Cost

b+
k b−

k Permanent trajectory P k Tentative trajectory T k

min
uk

E
{
gk(xk, uk, wk)+J̃k+1(xk+1)

}

Approximate Min Approximate E{·} Approximate Cost-to-Go J̃k+1

Optimal control sequence {u∗
0, . . . , u∗

k, . . . , u∗
N−1} Simplify E{·}

1

uk = µk(xk, rk) µk(·, rk) µ̃k(xk) xk At xk

µ̂k(xk) J̃k(xk) xs
k, us

k = µ̂k(xs
k) s = 1, . . . , q µ̃k(xk, rk) µ̃(·, r) µ̃(x, r)

Motion equations xk+1 = fk(xk, uk) Current State x

Penalty for deviating from nominal trajectory

State and control constraints Keep state close to a trajectory

Control Probabilities Run the Base Policy

Truncated Horizon Rollout Terminal Cost Approximation J̃

J∗
3 (x3) J∗

2 (x2) J∗
1 (x1) Optimal Cost J∗

0 (x0) = J∗(x0)

Optimal Cost J∗
k (xk) xk xk+1 x

′
k+1 x

′′
k+1

Opt. Cost J∗
k+1(xk+1) Opt. Cost J∗

k+1(x
′
k+1) Opt. Cost J∗

k+1(x
′′
k+1)

xk uk u
′
k u

′′
k Matrix of Intercity Travel Costs

Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

Use a Neural Scheme or Other Scheme

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

1

Neural Network Features Approximate Cost J̃µ Policy Improvement

F̂ = {f1, f2, f3, f4, f5, f6, f7}
Representative Features States dfi f f̄ with Aggregation Problem

Optimization

Current Policy µ Approximately Improved Policy µ̂ µ̃

Tµ�r �r = ⇧Tµ�r

Generate “Improved” Policy µ̂

State Space Feature Space Subspace J = {�r | s 2 <s} Ps
`=1 F`(i, v)r`

r = (r1, . . . , rs) Direct Method: Projecting the

State i y(i) Ay(i) + b Fs(i, v) F1(i, v) F2(i, v) Linear Weighting of
Features

min
uk,µk+1,...,µk+`�1

E

(
g(xk, uk, wk) +

k+`�1X

i=k+1

↵i�kg
�
xi, µi(xi), wi

�
+ ↵`J̃(xk+`)

)

5

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

One-Step Lookahead Multistep Lookahead

d`i = 0 if i /2 I`

�j ¯̀ = 1 if j 2 I¯̀

p̂ff̄ (u) =

nX

i=1

dfi

nX

j=1

pij(u)�jf̄

ĝ(f, u) =
nX

i=1

dfi

nX

j=1

pij(u)g(i, u, j)

Representative Feature States Feature Space F F (j) �jf1 �jf2 �jf3

�jf4

i1 i2 i` r⇤1 r⇤q r⇤` . . . iq

Disaggregation Sets If Aggregate Optimization Feature States

Neural Network Features Approximate Cost J̃µ Policy Improvement
Sampling

4

Artificial Start State End State

Piecewise Constant Aggregate Problem Approximation

Feature Vector F (i) Aggregate Cost Approximation Cost Ĵµ

�
F (i)

�

R1 R2 R3 R` Rq�1 Rq r⇤q�1 r⇤3 Cost Ĵµ

�
F (i)

�

I1 I2 I3 I` Iq�1 Iq r⇤2 r⇤3 Cost Ĵµ

�
F (i)

�

Aggregate States Scoring Function V (i) J⇤(i) 0 n n� 1 State i Cost

function Jµ(i)I1 ... Iq I2 g(i, u, j)
...

TD(1) Approximation TD(0) Approximation V̂1(i) and V̂0(i)

Aggregate Problem Approximation TD(0) Approximation V̂1(i) and
V̂0(i)

�jf̄ =

⇢
1 if j 2 If̄

0 if j /2 If̄

1 10 20 30 40 50 I1 I2 I3 i J̃1(i)

(May Involve a Neural Network) (May Involve Aggregation)

One-Step Lookahead Multistep Lookahead

d`i = 0 if i /2 I`

�j ¯̀ = 1 if j 2 I¯̀

p̂ff̄ (u) =

nX

i=1

dfi

nX

j=1

pij(u)�jf̄

ĝ(f, u) =
nX

i=1

dfi

nX

j=1

pij(u)g(i, u, j)

Representative Feature States Feature Space F F (j) �jf1 �jf2 �jf3

�jf4

i1 i2 i` r⇤1 r⇤q r⇤` . . . iq

Disaggregation Sets If Aggregate Optimization Feature States

Neural Network Features Approximate Cost J̃µ Policy Improvement
Sampling

4

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ (TJ)(1)

First Step First ℓ Steps “Future”

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION minu∈U(x) E
{
g(x, u, w)+

αJ̃
(
f(x, u, w)

)}

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

1

Defines a lookahead policy µ̃ with µ̃(xk) the minimizing uk above

KEY NEW FACT: Jµ̃ is the result of a Newton step to solve Bellman Eq. starting from J̃
(Newton-SOR step for multistep lookahead ` > 1). The error decreases
SUPERLINEARLY

Jµ̃ − J∗

J̃ − J∗
→ 0 as J̃ → J∗

Bertsekas Lessons from AlphaZero November 2021 12 / 38

An Abstract DP Viewpoint: Bellman Operators and Bellman Equations
(Abstract DP Book, 2018, DPB)

(TµJ)(x) = Ew

{
g
(
x , µ(x),w

)
+ αJ

(
f (x , µ(x),w)

)}
(TJ)(x) = min

u∈U(x)
Ew

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
= min

µ
(TµJ)(x)

They define the Bellman equations Jµ = TµJµ, J∗ = TJ∗

Tµ and T transform real-valued functions J into functions TµJ and TJ
(assumed real-valued for this talk)

How many dimensions? Answer: The number of states x

For each fixed x , (TµJ)(x) and (TJ)(x) are functions of J

Example: For a 2-state system, (TJ)(1) and (TJ)(2) are real-valued functions of
the vector J =

(
J(1), J(2)

)
∈ <2

In this case Tµ and T map <2 to <2

Both Tµ and T are monotone

Tµ is linear

T is “concave", i.e., (TJ)(x) is a concave function of J for each fixed x

For infinite-dimensional state space, Tµ and T are infinite-dimensional operators
(map infinite dimensional function space to itself)

Bertsekas Lessons from AlphaZero November 2021 14 / 38

Visualization Using 1-D Slices Through J∗

Two-State and Two-Control Example: A 4-D Graph = Two 3-D Graphs

(TµJ)(x) = Ew

{
g
(
x , µ(x),w

)
+ αJ

(
f (x , µ(x),w)

)}
, x = 1, 2 (linear monotone)

(TJ)(x) = min
u∈U(x)

Ew

{
g(x , u,w) + αJ

(
f (x , u,w)

)}
, x = 1, 2 (concave monotone)

They define the Bellman equations Jµ = TµJµ, J∗ = TJ∗

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1

J 0 Jµ = � 1
µ TµJ = �µ + (1 � µ2)J TJ = minµ2(0,1] TµJ

Region of Instability Region of Stability TµJ = �µ + (1 � µ2)J K̂

State 1 State 2 2-State/2-Control Example
E↵ective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ0 Tµ0J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T One-step
lookahead

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T One-step
lookahead

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T One-step
lookahead

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

One-step lookahead J∗ J∗(1) J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

One-step lookahead J∗ J∗(1) J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

One-step lookahead J∗ J∗(1) J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

One-step lookahead J∗ J∗(1) J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

State 1 State 2 2-State/2-Control Example
Effective Cost Approximation Value Space Approximation State 1

State 2 (TJ)(1)

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

J∗ J∗(1) J∗(2) (TJ∗)(1) = J∗(1) (TJ∗)(2) = J∗(2)

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Bertsekas Lessons from AlphaZero November 2021 15 / 38

µ-Bellman Operator in One Dimension Through Jµ

(TµJ)(x) = Ew

{
g
(
x , µ(x),w

)
+ αJ

(
f (x , µ(x),w)

)}
(linear monotone)

µ-Bellman equation: Jµ = TµJµ

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ

Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ Cost of µ

Jµ Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

One-step lookahead Generic policy µ

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Bertsekas Lessons from AlphaZero November 2021 16 / 38

MIn-Bellman Operator in One Dimension Through J∗

(TJ)(x) = min
u∈U(x)

Ew

{
g(x , u,w)+αJ

(
f (x , u,w)

)}
= min

µ
(TµJ)(x) (concave monotone)

Min-Bellman equation: J∗ = TJ∗

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ

Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Value Space Approximation J̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

(r1, . . . , rs: Scalar weights)

Wp: Functions J ≥ Ĵp with J(xk) → 0 for all p-stable π

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

One-step lookahead Generic policy µ

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

One-step lookahead Generic policy µ

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T One-step
lookahead

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T One-step
lookahead

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

1

Interval I Interval II Interval III Interval IV Ks K∗ Kµ K − 1
2 −µ −1

J 0 Jµ = − 1
µ TµJ = −µ + (1 − µ2)J TJ = minµ∈(0,1] TµJ

Region of Instability Region of Stability TµJ = −µ + (1 − µ2)J K̂

Effective Cost Approximation Value Space Approximation

J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Generic stable policy µ TµJ Generic unstable policy µ′ Tµ′J

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T One-step
lookahead

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J∗(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 − 1

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗ T J̃ = minµ TµJ̃

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2

Evaluation Policy µ̃ with Tµ̃J̃ = T J̃ (attains the min)

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

1

Bertsekas Lessons from AlphaZero November 2021 17 / 38

Visualization of Value Iteration: Jk+1 = TJk

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

R + g(1) + �

n�

j=1

p1jJ�(j)

i� i� � 1

g(i) + �

n�

j=1

pijJ�(j)

Do not Replace Set SR i 1 n
J0 J1 = TJ0 J2 = T 2J0 J J� = TJ� TJ Tµ1J Jµ1 = Tµ1Jµ1

x0 x2 x1 = R(x0) J2 = TJ1 x x� = R(x�) TJ Tµ1J Jµ1 = Tµ1Jµ1

S(0) S(k) S(k + 1) J� J = (J1, J2) TJ = (T1J, T2J)

J1 Policy Improvement J2 Policy Improvement J1 Policy Evaluation
R(x)

Policy Iteration J t+1 = TJ t = Tµt+1J t J t+1 = Tm
µt J t

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1 J0 ⇧⇤

(J1, µ1) TJ = minµ TµJ

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1 J0 ⇧⇤

(J1, µ1) TJ = minµ TµJ

Policy Improvement Exact Policy Evaluation (Exact if m = ⌅)

Approx. Policy Evaluation J t ⇧⇤ (J t+1, µt+1)

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⇥ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

1

J1 J2

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

J∗ (x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approximation of E{·} Multiagent policy im-

provement Fitted

Simplified Minimization Approximation of Jµ Approximation of E{·} Multiagent policy im-

provement Bellman Equation Value Iterations

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

TµJ Cost of µ

Jµ Rollout by (possibly inexact) simulation Truncated rollout (optimistic PI) Parallel rollout (multiple

policies)

Problem approximation (aggregation) Certainty equivalence b J a + J min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, involving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by some control i.e.,

PATH PLANNING FOLLOW A GIVEN TRAJECTORY REGULATION PROBLEM

States at the End of the Lookahead Final States

xk+1 = f(xk, uk)

and the cost per stage

g(xk, uk) ≥ 0, for all (xk, uk)

f(0, uk) = 0, g(0, uk) = 0 for some control uk ∈ Uk(0)

(ℓ − 1)-Stages Minimization Control of Belief State

Keep the state near some given point Traditionally 0 (the origin)

Must Deal with State and Control Constraints Linear-Quadratic Formulation is Often Inadequate

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Convergence Jk → J∗ depends on J0 and the “slope" of T (e.g., whether T is a
contraction)

Bertsekas Lessons from AlphaZero November 2021 18 / 38

Newton’s Method for Solving Fixed Point Equation J = TJ

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator Newton step from Jk

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

Jk Jk+1 Fixed Base Policy Adaptive Reoptimization Position Eval-
uator

Newton step from Jk J∗ = TJ∗

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

minµ TµJ̃ µ̃ = argminµ TµJ̃ Player/Policy Jµ = TµJµ

With the Newton Step Adaptive Rollout Cost Approximation

Generic Policy µ Linearization T ′
Jk

J

Result of Newton step from Jk for solving J = TJ

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

1

It is an iterative method that generates a sequence {Jk}. The typical iteration:

Given Jk

“Linearize" T at Jk : Replace TJ by the linearization T ′Jk
J

Solve the linearized fixed point problem J = T ′Jk
J

The solution of the linearized fixed point problem is the next iterate Jk+1

Bertsekas Lessons from AlphaZero November 2021 20 / 38

Linearization/Newton Step by One-Step Lookahead

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

Value Space Approximation J̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy µ̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Corresponds to One-Step Lookahead Policy µ̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Value Space Approximation J̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃

Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

(T J̃)(x) = min
µ

(TµJ̃)(x) = (Tµ̃J̃)(x) (linearization of T at J̃ yields µ̃)

This is a key new insight. Do we need differentiability of T?

No! The Newton step can work without differentiability because T is concave and
monotone; (assumptions needed, everything is OK for “contractive" problems)

The Newton step smooths out starting point variations (lots of empirical evidence)

Bertsekas Lessons from AlphaZero November 2021 21 / 38

Linearization/Newton-SOR Step by Multistep Lookahead

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

Value Space Approximation J̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy µ̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Corresponds to One-Step Lookahead Policy µ̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ
Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃

Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃

Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ = Tµ̃Jµ̃

Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2

ar
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T ℓ−1J̃ for solving J = TJ

1

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Linear policy parameter Optimal ℓ = 3 ℓ = 2

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

(T `J̃)(x) = min
µ

(TµT `−1J̃)(x) = (Tµ̃T `−1J̃)(x) (linearization of T at T `−1J̃ yields µ̃)

Solution of the linearized equation J = Tµ̃J yields the cost function Jµ̃ of µ̃

Newton-SOR converges faster than pure Newton, but is more time-consuming

Bertsekas Lessons from AlphaZero November 2021 22 / 38

Stability in the MPC Context (Deterministic Problem, Positive Costs,
Cost-Free Terminal State)

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Value Space Approximation J̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

J1 J2 J∗ = TJ∗

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

TJ Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

1

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F̃ (P) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

Perfect-State Info Ch. 3

1

Value Space Approximation J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

using an Corresponds to One-Step Lookahead Policy µ̃

Line

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Value Space Approximation J̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Value Space Approximation J̃ Tµ̃J

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

ONE-STEP LOOKAHEAD MULTISTEP LOOKAHEAD

Linear policy parameter Optimal ℓ = 3 ℓ = 2

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization Position Evaluator

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model minµ TµJ̃

With the Newton Step Adaptive Rollout Cost Approximation

Without the Newton Step Base Player Threshold

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

A policy µ is called stable if Jµ(x) <∞ for all x (a very general definition)
True if Tµ has “slope" < 1 (i.e., Tµ is a contraction)

Region of stability: The set of J̃ for which the lookahead policy µ̃ is stable
Depends on the length of lookahead - threshold shifts to the left as ` increases

It makes sense to try to push J̃ towards some Jµ with µ stable (rollout idea)
Bertsekas Lessons from AlphaZero November 2021 24 / 38

Rollout: A Newton Step Starting from J̃ = Jµ, where µ is a Stable Policy

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

Cost-to-go approximation Expected value approximation TµJ
Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃

Simplified minimization

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 � r

↵b2 K̃ K K⇤ Kk Kk+1 F (K) = ↵rK
r+↵b2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

x1
k, u1

k u2
k x2

k dk ⌧

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

1

Cost-to-go approximation Expected value approximation TµJ
Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃

Simplified minimization

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 � r

↵b2 K̃ K K⇤ Kk Kk+1 F (K) = ↵rK
r+↵b2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

x1
k, u1

k u2
k x2

k dk ⌧

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

1

Cost-to-go approximation Expected value approximation TµJ
Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃

Simplified minimization

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 � r

↵b2 K̃ K K⇤ Kk Kk+1 F (K) = ↵rK
r+↵b2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

x1
k, u1

k u2
k x2

k dk ⌧

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout

Simplified minimization Value iterations Policy evaluations
Policy Improvement with Base Policy µ

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout

Simplified minimization Value iterations Policy evaluations
Policy Improvement with Base Policy µ

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout

Simplified minimization

Linearized Bellman Eq. at Jµ Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Value iterations

Value iterations

Policy Improvement with Base Policy µ

Policy evaluations for µ and µ̃

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout

Simplified minimization

Linearized Bellman Eq. at Jµ Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Value iterations

Value iterations

Policy Improvement with Base Policy µ

Policy evaluations for µ and µ̃

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

1

Cost-to-go approximation Expected value approximation

Optimal cost J∗ Jµ1(x)/Jµ0(x) = K1/K0 L0 r

TµJ Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃ Cost of base policy µ

Cost of rollout policy µ̃ Optimal Base Rollout

Simplified minimization

Linearized Bellman Eq. at Jµ Yields Rollout Policy µ̃

Through Tµ̃Jµ = TJµ

Value iterations

Value iterations

Policy Improvement with Base Policy µ

Policy evaluations for µ and µ̃

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

αb2 K̃ K K∗ Kk Kk+1 F (K) = αrK
r+αb2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µ and for µ̃ Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µ and for µ̃ Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µ and for µ̃ Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Rollout with a stable policy µ yields a stable policy µ̃

Bertsekas Lessons from AlphaZero November 2021 26 / 38

Policy Iteration (PI) is Repeated Rollout - Starting from a Stable Policy it
Produces a Sequence of Stable Policies {µk}

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u, w) | there exists x ⇧ X

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µ and for µ̃ Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Off-Line Obtained Player Off-Line Obtained Cost Approximation

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

Same algorithm learned multiple games (Go, Shogi)

Aggregate costs r∗
ℓ Cost function J̃0(i) Cost function J̃1(j)

Approximation in a space of basis functions Plays much better than
all chess programs

Cost αkg(i, u, j) Transition probabilities pij(u) Wp

Controlled Markov Chain Evaluate Approximate Cost J̃µ of

Evaluate Approximate Cost J̃µ

(
F (i)

)
of

F (i) =
(
F1(i), . . . , Fs(i)

)
: Vector of Features of i

J̃µ

(
F (i)

)
: Feature-based architecture Final Features Optimal Policy

If J̃µ

(
F (i), r

)
=

∑s
ℓ=1 Fℓ(i)rℓ it is a linear feature-based architecture

1

Jmk = TmkJmk

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Jmk = TmkJmk

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Jµk = TµkJµk

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

OFF-LINE TRAINING Off-Line Training of Value and/or Policy

Approximations

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Pure form of PI is Newton’s method (known for special cases, Kleinman 1968 ++)

Bertsekas Lessons from AlphaZero November 2021 27 / 38

Truncated Rollout with Base Policy µ (Related to Optimistic PI)

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

Cost-to-go approximation Expected value approximation TµJ
Jµ = TµJµ Jµ̃ = Tµ̃Jµ̃

Simplified minimization

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 � r

↵b2 K̃ K K⇤ Kk Kk+1 F (K) = ↵rK
r+↵b2K + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step Value Network Policy Network

Approximation of E{·}: Approximate minimization:

min
u2U(x)

nX

y=1

pxy(u)
�
g(x, u, y) + ↵J̃(y)

�

x1
k, u1

k u2
k x2

k dk ⌧

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
�
ỹk, uk, R(yk+1)

�
2 C

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ1 x̃2 ũ2 x̃3

x0 u⇤
0 x⇤

1 u⇤
1 x⇤

2 u⇤
2 x⇤

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x⇤
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n � 1
n � 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y)

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

Value Space Approximation J̃

(x, u) pxy(u) g(x, u, y) y (y, v) IT’S JUST MATH ...

Approximate Minimization Computation of J̃ Approxima-
tion of E{·} Multiagent policy improvement Fitted

Simplified Minimization Approximation of Jµ Approxima-
tion of E{·} Multiagent policy improvement Bellman Equation

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃µ(y)

)

Rollout by (possibly inexact) simulation Truncated rollout (optimistic
PI) Parallel rollout (multiple policies)

Problem approximation (aggregation) Certainty equivalence b J a+J
min[b, a + J]

Single policy

xk+2 x′
k+2 uk+1 u′

k+1 x′′
k+2 x′′′

k+2 u′′
k+1 u′′′

k+1 α = 0 x

Consider an undiscounted infinite horizon deterministic problem, in-
volving the System: Cost:

Implicit Current The system can be kept at the origin at zero cost by
some control i.e.,

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Through Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined
by

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

1

J0 J1 = TJ0 J2 = TJ1 J J� = TJ� TJ
Cost =0 Cost = c < 0 Prob. = 1 � p Prob. = 1 Prob. = p P

Policy µ Policy µ� (a) (b) rµ = 0 Rµ Rµ⇤

rµ⇤ ⌅ c

1 � �
,

c

�
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ⇤ |A|

j⇥0 j⇥1 j⇥k j⇥k+1 j⇥0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(�⇥)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ⇥ k

f�(⇥)

Constant � f�
1 (⇥) f�

2 (�⇥) F �
2,k(�⇥)F �

k (⇥)

�
(g(x), f(x)) | x ⇧ X

M =
�
(u,w) | there exists x ⇧ X

1

Linear policy parameter Optimal ` = 3 ` = 2 m = 4

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING O↵-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu2U(x) E
n

g(x, u, w) + ↵J̃
�
f(x, u, w)

�o

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Truncated rollout with `-step lookahead is similarly defined: Total lookahead is `+ m

Truncated rollout is an economical substitute for multistep lookahead (e.g., TD-Gammon)
Bertsekas Lessons from AlphaZero November 2021 28 / 38

Linear Quadratic Problems: Riccati Instead of Bellman Operators

xk Lk uk wk xk+1 = Akxk + Bkuk + wk
�2P
P+1

F (P) P̃ Pk Pk+1 P ⇤ Q 0 P̃ � R
B2

A2R
B2 + Q 45�

F̃ (P) k Q 0 P � R
E{B2} 45�

Stock at Period k +1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

SA SB CAB CAC CCA CCD CBC CCB CCD

CAB CAD CDA CCD CBD CDB CAB

Do not Repair Repair 1 2 n�1 n p11 p12 p1n p1(n�1) p2(n�1)

...

p22 p2n p2(n�1) p2(n�1) p(n�1)(n�1) p(n�1)n pnn

2nd Game / Timid Play 2nd Game / Bold Play

1st Game / Timid Play 1st Game / Bold Play pd 1� pd pw 1� pw

0 � 0 1 � 0 0 � 1 1.5 � 0.5 1 � 1 0.5 � 1.5 0 � 2

System xk+1 = fk(xk, uk, wk) uk = µk(xk) µk wk xk

3 5 2 4 6 2

10 5 7 8 3 9 6 1 2

Initial Temperature x0 u0 u1 x1 Oven 1 Oven 2 Final Temperature
x2

⇠k yk+1 = Akyk + ⇠k yk+1 Ck wk

Stochastic Problems

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost T 2J̃ T J̃

J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

r
b2 + q q F (K) = arK

r+b2K + q

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region

Tµ̃T m
µ J̃ = TT m

µ J̃ Yields Truncated Rollout Policy µ̃ Defined by

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = arK

r+b2K + q K̃ = 0 K̄ KL̃

L̃ = −r + ab2K̃

abK̃
K1 L̃ = −r + ab2K1

abK1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = a2rK

r+b2K + q K̃ = 0 K̄ KL̃

L̃ = −r + ab2K̃

abK̃
K1 L̃ = −r + ab2K1

abK1

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

Multiagent Q-factor minimization xk Possible States xk+1 xk+m+1

Termination State Constraint Set X X = X X̃ Multiagent

r
b2 + 1 1 − r

b2 K K∗ Kk kk+1
αKr

r+αKb2 + 1

Current Partial Folding Moving Obstacle

Complete Folding Corresponding to Open

Expert

Rollout with Base Policy m-Step

Approximation of E{·}: Approximate minimization:

min
u∈U(x)

n∑

y=1

pxy(u)
(
g(x, u, y) + αJ̃(y)

)

x1
k, u1

k u2
k x2

k dk τ

Q-factor approximation

u1 û1 10 11 12 R(yk+1) Tk(ỹk, uk) =
(
ỹk, uk, R(yk+1)

)
∈ C

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ1 x̃2 ũ2 x̃3

x0 u∗
0 x∗

1 u∗
1 x∗

2 u∗
2 x∗

3 ũ0 x̃1 ũ1 x̃1

High Cost Transition Chosen by Heuristic at x∗
1 Rollout Choice

Capacity=1 Optimal Solution 2.4.2, 2.4.3 2.4.5

Permanent Trajectory Tentative Trajectory Optimal Trajectory Cho-
sen by Base Heuristic at x0 Initial

Base Policy Rollout Policy Approximation in Value Space n n − 1
n − 2

One-Step or Multistep Lookahead for stages Possible Terminal Cost

Approximation in Policy Space Heuristic Cost Approximation for

for Stages Beyond Truncation yk Feature States yk+1 Cost gk(xk, uk)

Approximate Q-Factor Q̃(x, u) At x Approximation Ĵ

min
u∈U(x)

E
w

{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Truncated Rollout Policy µ m Steps

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2 + q q F (K) = a2rK

r+b2K + q K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

Effective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃

T J = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ ≤ J Tµ̃J

TJ Instability Region Stability Region 0 T m
µ J̃

ar
b2

ar
b2 + q q F (K) = a2rK

r+b2K + q K∗ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = − abK̃

r + ab2K̃
K1 L̃ = − abK1

r + ab2K1

F (K) =
a2rK

r + b2K

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1)

Tµ̃(T m
µ J̃) = T (T m

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

1

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

ar
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

1

NORMAL CASE EXCEPTIONAL CASE

Interval I Interval II Interval III Interval IV Ks K⇤ Kµ K � 1
2 �µ �1

J 0 Jµ = � 1
µ TµJ = �µ + (1 � µ2)J TJ = minµ2(0,1] TµJ

Region of Instability Region of Stability TµJ = �µ + (1 � µ2)J K̂

E↵ective Cost Approximation Value Space Approximation J̃ Jµ̃ Jµ̃ =
Tµ̃Jµ̃ Tµ̃J TJ = minµ TµJ Cost of µ̃

Cost of Truncated Rollout Policy µ̃ 1 of the graph of T

TJ = minµ TµJ One-Step Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

TJ = minµ TµJ Multistep Lookahead Policy Cost l J̃ Jµ̃ = Tµ̃Jµ̃ Tµ̃J

Multistep Lookahead Policy Cost J is a function of x

FL(K) = (a + bL)2K + q + rL2 FL̃(K)

T 2J̃ T J̃ J̃ Region where Sequential Improvement Holds TJ J Tµ̃J

TJ Instability Region Stability Region 0 Tm
µ J̃

a2r
b2

a2r
b2 + q q F (K) = a2rK

r+b2K + q K⇤ = 0 K̃ = 0 K̄ K̄ = 0 KL̃

L̃ = � abK̃

r + ab2K̃
K1 L̃ = � abK1

r + ab2K1

F (K) =
a2rK

r + b2K

J⇤(1) = 0 J(1) (TJ)(1) = min{J(1), 1}

using an Corresponds to One-Step Lookahead Policy µ̃

Line Stability Region F (K) = arK
r+b2K + q FL̃(K1) K̂ = a2 � 1

Tµ̃(Tm
µ J̃) = T (Tm

µ J̃) Yields Truncated Rollout Policy µ̃ Defined by

Newton step from J̃ for solving J = TJ

Newton step from T `�1J̃ for solving J = TJ (TJ)(1)

First Step First ` Steps “Future”

1

Riccati operator is the restriction of the Bellman operator to the subspace of quadratics

Linear system xk+1 = axk + buk . Cost g(x ,u) = qx2 + ru2, q, r ≥ 0, α = 1

J∗(x) = K ∗x2; K ∗ solves the Riccati Eq. K = F (K)

Normal case: q > 0, r > 0. Riccati Eq. has K ∗ as its unique positive solution

Exceptional case example: q = 0, r > 0, and unstable system a > 1. Riccati Eq.
has two nonnegative solutions K ∗ = 0 and K̂ = r(a2−1)

b2

Bertsekas Lessons from AlphaZero November 2021 30 / 38

A Common Question: Why Not Just Train a Policy Network and Use it
Without On-Line Play?

Pure approx. in policy space (policy gradient, random search, etc) is flawed

It lacks the exact Newton step, which corrects (superlinearly) the errors
of off-line training

-1 -0.8 -0.6 -0.4 -0.2 0
0

2

4

6

8

10

12

Linear policy parameter

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Linear policy parameter Optimal

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Linear policy parameter Optimal

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Linear policy parameter Optimal

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

A one-dimensional linear quadratic example (with known and fixed model)
Consider a parametrized suboptimal linear policy µ(x) = Lx without one-step
lookahead, and its version with one-step lookahead/Newton step

Bertsekas Lessons from AlphaZero November 2021 31 / 38

Model Predictive Control (MPC)

Classical form of MPC (1980s+, extensive literature)
Applies to continuous state and control deterministic problem with positive cost

xk+1 = f (xk , uk), g(x , u) > 0 for all x 6= 0, g(0, u) = 0

MPC is central in control theory, but is culturally different from RL/AI

MPC’s architecture is very similar to AlphaZero ... includes lookahead
minimization (“control interval"), rollout (“prediction interval"), and terminal cost

MPC focuses on continuous spaces, control/stability issues, and places most
emphasis on on-line play

There is some off-line training, like computing off-line terminal cost
approximations, base policies, and safe regions/reachable target tubes (to deal
with state constraints xk ∈ X)

Extended forms of MPC (Rawlings+Mayne+Diehl, Borrelli+Bemporad+Morari)
More complex versions that deal with stochastic uncertainties, hybrid
continuous/discrete control space versions, minimax versions, target tubes (to
deal with state constraints), etc

Involve simulation-based rollout with an off-line trained policy. One of these has
been called Learning MPC (Rosolia+Borrelli, Li+Johansson+Martensson+DPB)

Bertsekas Lessons from AlphaZero November 2021 33 / 38

Adaptive Control - Changing System, On-line System Identification
Initial State 15 1 5 18 4 19 9 21 25 8 12 13 c(0) c(k) c(k + 1) c(N � 1) Parking Spaces

Stage 1 Stage 2 Stage 3 Stage N N � 1 c(N) c(N � 1) k k + 1

Heuristic Cost “Future” System xk+1 = fk(xk, uk, wk) xk Observations

Belief State pk Controller µk

Initial State x0 s Terminal State t Length = 1

x0 a 0 1 2 t b C Destination

J(xk) ! 0 for all p-stable ⇡ from x0 with x0 2 X and ⇡ 2 Pp,x0 Wp+ = {J 2 J | J+ J} Wp+ from

within Wp+

Prob. u Prob. 1 � u Cost 1 Cost 1 �p
u

J(1) = min
�
c, a + J(2)

J(2) = b + J(1)

J⇤ Jµ Jµ0 Jµ00Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

f(x; ✓k) f(x; ✓k+1) xk F (xk) F (x) xk+1 F (xk+1) xk+2 x⇤ = F (x⇤) Fµk
(x) Fµk+1

(x)

Improper policy µ

Proper policy µ

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

x pxx(u) pxy(u) pyx(u) pyy(u) pxt(u) pyt(u) x y

αpxx(u) αpxy(u) αpyx(u) αpyy(u) 1 − α

Cost 0 Cost g(x, u, y) System State Data Control Parameter Estimation

Optimal cost Cost of rollout policy µ̃ Cost of base policy µ

Cost E
{
g(x, u, y)

}
Cost E

{
g(i, u, j)

}

Value Network Current Policy Network Approximate Policy

Approximate Policy Evaluation Approximately Improved Policy Evaluation

Approximate Policy Evaluation Approximate Policy Improvement

0 1 2 3 4 5 6

Deterministic Stochastic Rollout Continuous MPC Constrained Discrete Combinatorial Multiagent

MCTS Variance Reduction

Section 2.3 Section 2.4 Sections 2.5, 3.1 3.3 3.4 3.2, 3.3, 3.3.3 2.4.3 2.4.2 3.3, 3.4

2.4.3, 2.4.4 2.4.2 3.3, 3.4

Monte Carlo Tree Search ‘

min
uk,µk+1,...,µk+ℓ−1

E

{
gk(xk, uk, wk) +

k+ℓ−1∑

i=k+1

gi

(
xi, µi(xi), wi

)
+ J̃k+ℓ(xk+ℓ)

}

Optimal Cost Terminal States Cost Approximation Cost g(i, u, j) Policy µ State Space First Stage

“Future”

1

Adaptive

Linear policy parameter Optimal ` = 3 ` = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING O↵-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu2U(x) E
n

g(x, u, w) + ↵J̃
�
f(x, u, w)

�o

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Classical indirect adaptive control (1960s+, extensive book literature)
Simply reoptimizes the controller, when the estimated model changes ... but this may
be a difficult/time-consuming reoptimization

Faster alternative: Indirect adaptive control by rollout with a (robust) policy
Use rollout in place of reoptimization - this is simpler (use the current model
estimate for lookahead minimization and a nominal/robust base policy for rollout)

Capitalizes on the fast convergence of the Newton step

Bertsekas Lessons from AlphaZero November 2021 35 / 38

Adaptive Control by Rollout: A Linear Quadratic Example

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
1

1.2

1.4

1.6

1.8

2

2.2

2.4

Fixed Base Policy Adaptive

Linear policy parameter Optimal ` = 3 ` = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING O↵-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu2U(x) E
n

g(x, u, w) + ↵J̃
�
f(x, u, w)

�o

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive

Linear policy parameter Optimal ` = 3 ` = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING O↵-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu2U(x) E
n

g(x, u, w) + ↵J̃
�
f(x, u, w)

�o

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Rollout Adaptive Reoptimization

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Rollout Adaptive Reoptimization

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

Fixed Base Policy Adaptive

Linear policy parameter Optimal ` = 3 ` = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING O↵-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu2U(x) E
n

g(x, u, w) + ↵J̃
�
f(x, u, w)

�o

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive

Linear policy parameter Optimal ` = 3 ` = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING O↵-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

�
F (i), r

�
of i ⇡ Jµ(i) Jµ(i) Feature

Map

J̃µ

�
F (i), r

�
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu2U(x) E
n

g(x, u, w) + ↵J̃
�
f(x, u, w)

�o

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Rollout Adaptive Reoptimization

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Rollout Adaptive Reoptimization

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

Fixed Base Policy Adaptive Reoptimization

Linear policy parameter Optimal ℓ = 3 ℓ = 2 m = 4 Model

With the Newton Step Adaptive Rollout

Without the Newton Step

Jµk = TµkJµk Jµk+1 = Tµk+1Jµk+1 Reoptimization

Current Position xk ON-LINE PLAY Lookahead Tree States xk+1

States xk+2 Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Corresponds to One-Step Lookahead Tree States xk+1 States xk+2

Policy Evaluation for µk and for µk+1 Evaluation Policy µ̃ with Tµ̃J̃ =
T J̃

Position Evaluation Policy µ̃ with Tµ̃J̃ = T J̃

Cost of µk Cost of µk+1

NOTE: J is a function (an n-vector for n states)

The figure is a one-dimensional “slice” of the graph of J

OFF-LINE TRAINING Off-Line Training of Value and/or Policy Re-
sult of

Approximations Result of

6 1 3 2 9 5 8 7 10 ON-LINE PLAY Linearized Bellman Eq. at Jµk

Player Corrected J̃ J̃ J* Cost J̃µ

(
F (i), r

)
of i ≈ Jµ(i) Jµ(i) Feature

Map

J̃µ

(
F (i), r

)
: Feature-based parametric architecture State

r: Vector of weights Original States Aggregate States

Position “value” Move “probabilities” Simplify E{·}
Choose the Aggregation and Disaggregation Probabilities

Use a Neural Network or Other Scheme Form the Aggregate States
I1 Iq

NEWTON STEP INTERPRETATION

minu∈U(x) E
{
g(x, u, w) + αJ̃

(
f(x, u, w)

)}

Possibly Include “Handcrafted” Features

Generate Features F (i) of Formulate Aggregate Problem

Generate “Impoved” Policy µ̂ by “Solving” the Aggregate Problem

1

System: xk+1 = xk + buk

Cost g(x , u) = x2 + ru2

We use one-step lookahead and rollout with base policy that is optimal for the
nominal values b = 2, r = 0.5

In the left figure we change the system parameter b

In the right figure we change the cost parameter r

Using a “robust" controller as base policy without the Newton step is often flawed

Using a “robust" controller as base policy with the Newton step corrects the flaw

Bertsekas Lessons from AlphaZero November 2021 36 / 38

Concluding Remarks

There is much to be gained by using on-line play on top of off-line training
Using just off-line training without on-line play may not work well

I On-line play uses an exact Newton step (not subject to training errors), and can deal
with changing system parameters

Using just on-line play without off-line training misses out on performance
I Off-line training can produce good starting points for the Newton step

The role of Newton’s method is central - this is a new insight that can guide both
analysis and algorithmic design

The Newton step is exact ... all the approximation goes into the starting point for
the Newton step (which washes out training method differences and errors)

The cultural divide between RL/AI and control can be bridged by combining
off-line training and on-line play

MPC uses a very similar architecture to AlphaZero; can benefit from RL/AI ideas

We can approach indirect adaptive control through rollout: Use a Newton step in
place of reoptimization

Generality: Arbitrary state and control spaces, discrete optimization applications,
multiagent versions (see the 2020 rollout/distributed RL book)

There are exceptional behaviors waiting for clarification by analysis

Bertsekas Lessons from AlphaZero November 2021 37 / 38

Some Words of Optimism

The successes of RL and of MPC are solid reasons for optimism

More success can be expected by combining ideas from both RL/AI and
MPC/adaptive control cultures

On-line long lookahead/rollout can be a computational bottleneck ...

But massive computational power and distributed computation can mitigate the
bottleneck, and allow more sophisticated on-line play strategies

There is an exciting journey ahead!

Thank you!

Bertsekas Lessons from AlphaZero November 2021 38 / 38

	Discounted and undiscounted infinite horizon problems
	Abstract DP concepts: Bellman operators and Bellman equations
	Visualization of on-line play as a Newton step
	Region of stability and its visualization
	Rollout and policy iteration visualizations
	Linear quadratic problem visualizations
	Model predictive control
	Adaptive control with model estimation (indirect adaptive control)

